UNIVERSIDAD

NACIONAL

DE COLOMBIA

El lenguaje de programacion Komodo

César Danilo Pedraza Montoya
cpedraza@unal.edu.co

Universidad Nacional de Colombia
Facultad de Ciencias
Departamento de matematicas
Bogota, Colombia
2025

mailto:cpedraza@unal.edu.co

indice

L INtrOdUCCION . ..ot e 1
2. VISION Gemeral e 1
2.1, SIStema de tIPOS . .. 1
2.2, Paradifmasue 1
2.3. Laestructura del intérpreteoo i 2
3. Analisis 1EXico ¥ SINTACTICO v vu e 3
3.1. Analizador 1EXiCOo 0 LeXer o 3
3.1.1. Rastreo de indentacién y el alcance del analizador léxicocoooiiiiiiit 3

3.2. Analizador sintdctiCo 0 PATSEr........ooiiii ittt 5
3.3. Post-analizador SINtActiCo 0 Weederoo it 5
4. Fjecucion de PrOZIamasoooutttttttttttttttttt e e 6
4.1. El modelo de eJecucionoooiioi it 6
4.1.1. ENtOINOS ..o 7
4.1.2. Evaluadoroooiii i 7

4.2, Variableso e 7
4.2.1. Resolucion de nombrest 7
4.2.2. Copiado de valoresooiiiiiiiii 8
4.2.3. Variables ¥ tIPOSottt 8
4.2.4. Ocultamiento 0 SRAdOWING oot e 9
4.2.5. Mutabilidad restringida ... 9

4.3, Importacion de COAIZO - 9
4.3.1. Comportamiento de las sentencias import ... 10

4.4. Blsqueda de patrones o Pattern matching ... 10
4.4.1. Descripcion de procedimientosoovueeeeeeittitiiii i 11

- Patrones en funcionesooiiiiiiii it 11

- EXPIesiones Caseooiiiiiiiii 11

4.4.2. DeseStrUCtUIaCIONttt ettt ettt 11

4.5, TaPOS oot e 12
4.5.1. Latente . ..o 12
4.5.2. Gradual 12
4.5.3. DINAINICO .o vee ettt e e 12
4.5.4. Los tipos INCOTPOTAOSvute ettt ettt e ettt e et 12

- Latupla Vacia e 12

= NUINETOS . e 13

- Eneros ..o 13

- Nameros de punto flotante i 13

- Fracciones 14

S Funciones ... 14

- Caracteres y CaAdeNasuutteett e 15

B O 1 111 - 15

= CAENAS ... 16

- ConteNEdOresue e 16

S TPl 16

e 5 3 17

= COMJUNEOS .. 18

= DICCIONATIOS . ..ttt 19

4.6. ELINTErprete ..o oot 20

4.7. GeStHOMN d€ MEIMIOTIA « . oot v ettt et et e e e e e e e e e e 20

4.8. Conversiones implicitas de valoresoooiiiiiiii 21
0 DR A 46 TS) o - 21

4.8.2. Caracteres y CA@NASuuuui ettt ettt et ettt 22

5. ASPECtOS PEIIFEIICOS ...ttt e 22
5.1. Software adicional i 22
5.1.1. Editor Web . ..o 22

5.1.2. Resaltado de SINtaxisoeeiiiitimii e 24

5.1.3. InStAladoresoouuni ettt 24

5.2, GUIA Q@ USO ot ettt ettt ettt et e et e et et e 24

6. Gramatica de Komodouuuiiii it 24
6.1. Lista de t0Kens oottt e 24
6.2. Reglas SINtACTICAS 26
6.2.1. Tabla de Precedenciasuuurriiiie et 28

| S (S (= o Lo - 29

El lenguaje de programacion Komodo

1. Introduccion

Komodo es un lenguaje de programacién hecho para probar ideas rapidamente. Es ideal para problemas
con estructuras discretas como nuimeros y palabras. Komodo intenta que operar con estas entidades
sea tan facil como sea posible mientras se minimiza la cantidad de cddigo necesario para llegar a una
implementacion exitosa. La otra prioridad de Komodo es la sencillez: se busca que el lenguaje sea
pequefio y con reglas simples, con el proposito de que pueda ser aprendido con facilidad.

Komodo esta disefiado con la intencion de convertirse en una herramienta util para generar estructuras
discretas que puedan depender de muchas restricciones, para asi estudiarlas. Esta es una tarea comin
en el estudio de areas de las matematicas como la combinatoria, la teoria de la computacion, la teoria
de grafos o la teoria de codigos. Usar el computador como una herramienta de exploracion matematica
es una practica conocida como matematica experimental. [1, p. 2]

Este documento describe el lenguaje de programaciéon Komodo. No es una guia de uso del lenguaje.
También se exploran detalles del intérprete de Komodo creado por el autor. Sin embargo, no se describe
todo el comportamiento esperado de una implementacion del lenguaje, ni se proveen detalles del
intérprete mas alla de lo estructural.

2. Vision general

El propésito de Komodo tiene consecuencias en su diseno. Puesto que Komodo es un lenguaje para
scripting, no es una prioridad que el lenguaje se procese a si mismo, o que la representaciéon de los
datos sea similar a la representacion de los programas. Asimismo, el nivel de abstraccién de Komodo
y la etapa en que se encuentra el proyecto hacen preferible implementar un intérprete en lugar de un
compilador.

El disefio de Komodo no es deliberado, sino que se ha llegado a él con una construccién iterativa.

En esta seccion se explican brevemente las caracteristicas de Komodo, que son descritas con mayor
detalle en secciones posteriores.

2.1. Sistema de tipos

Komodo es un lenguaje con tipado débil y dindmico. Lo primero significa que las reglas de tipos son
relativamente laxas y se realizan conversiones implicitas de tipos, y lo segundo significa que estas
reglas y conversiones son verificadas y realizadas en tiempo de ejecucion. Esto es asi por varias razones:

« Komodo esta pensado para que las anotaciones de tipos sean totalmente opcionales, por lo que en
general no es posible inferir los tipos de todas las variables en tiempo de compilacion.

» Hace posible la implementacion de un intérprete sin afiadir analisis seméantico, lo que fue util para
llegar rapido a un prototipo funcional.

+ Komodo esta pensado para realizar algunas conversiones de tipos implicitamente, lo que necesaria-
mente implica que las restricciones de tipos son mas ligeras.

Komodo también es de tipado latente, lo que significa que los tipos estan asociados a valores y no
a variables o simbolos. Esto hace que un simbolo pueda tener valores tipos distintos en momentos
distintos. [2, p. 2].

Ademas, Komodo tiene tipado gradual. Se realiza chequeo de tipos en tiempo de ejecuciéon cuando el
usuario provee restricciones de tipos en las firmas de funciones y variables.

2.2. Paradigmas

Komodo emplea dos paradigmas de programacion: procedural y funcional.

El lenguaje de programacion Komodo

Por un lado, Komodo es un lenguaje procedural porque las formas y el orden importan: las sentencias
de un programa son evaluadas en el orden en que aparecen en el mismo. Esto establece una semantica
clara para cambiar el valor de una variable sin que esta sea mutable, por ejemplo. (vedse Seccion 4.2.4.)

Ademas, en Komodo las funciones tienen un papel protagénico: pueden declararse de forma nombrada
o andénima, pueden rastrear patrones y pueden pasarse como argumentos a otras funciones. La
busqueda de patrones de Komodo y su inclusion en las funciones permite describir procedimientos en
términos de lo que deben hacer, en lugar de como.

Esto permite que dependiendo del problema, un programa de Komodo pueda ser mas imperativo o
mas declarativo a conveniencia. La forma en que se restringe la combinacion de los dos paradigmas es
limitando la mutabilidad de valores.

2.3. La estructura del intérprete

Como suele suceder con multiples compiladores e intérpretes, el intérprete de Komodo funciona
como una cadena de procesamiento. Se comienza procesando texto, y tras cada paso se obtiene una
representacion del programa méas preparada para ser ejecutada. En el caso de Komodo, se tienen las
siguientes etapas:

Analizador léxico,

Analizador sintéctico,
Post-analizador sintactico o weeder,
Evaluador,

SAECaER S

Entorno de tiempo de ejecucién o runtime environment.

Este es un diagrama de secuencia de los componentes del intérprete. Las columnas son los compo-
nentes, y las flechas son interfaces. En algunos casos las interfaces son estructuras de datos, y en otros
son eventos invocados por el usuario.

Sistema operativo] lLexer] [Parser] [Weeder] lEvaluador] lRuntime]

' REPL

I
' Archivos con codigo

3 Token 3 3
| | e | |
1 1 1 ' AST 1 1
l 1 1 : > 1
3 3 3 3 ' Declaraciones _
1 1 1 1 ' Valores J
. _ Entrada/salida estandar ! l ! 1
Sistema operativo] [Lexer] [Parser] [Weeder] [Evaluador] [Runtime]

Figura 1: Componentes del intérprete y sus relaciones mas importantes.

En este documento se hace una descripcion del funcionamiento de cada componente y cada relacion
entre componentes, al mismo tiempo que se especifican aspectos de Komodo.

El lenguaje de programacion Komodo

3. Analisis léxico y sintactico

3.1. Analizador léxico o lexer

El analizador léxico convierte un programa, una sucesion de caracteres, en una sucesiéon de fokens,
que son unidades mas complicadas como palabras, nimeros y simbolos. Uno de los propositos de esta
fase es que las demas fases no tengan que lidiar con detalles relacionados al texto que representa el
programa: Las fases posteriores no deberian lidiar con aspectos como espacios en blanco, indentacién
o comentarios en el cddigo. Toda la informacién necesaria deberia estar incluida en los tokens que el
analizador emite.

La entrada del analizador es un stream de caracteres Unicode. Sin embargo, la mayoria de palabras
clave y simbolos se componen de caracteres ASCIL La salida es un stream de tokens. El lexer pasa una
sola vez por el texto de entrada para emitir todos los tokens correspondientes, y el texto es recorrido
conforme los tokens son emitidos.

let x := 2

!

Let, Ident(x), Assign, Integer(2)
Listado 1: Ejemplo de paso de un texto a una sucesion de tokens

3.1.1. Rastreo de indentacion y el alcance del analizador léxico
Los tokens Indent y Dedent indican el inicio y el final de un bloque de cédigo indentado, respectiva-
mente. Por ejemplo, en el siguiente fragmento de codigo

let f(x) = x + 2

Listado 2: Ejemplo de declaracion de una funcién

el cuerpo de la funcién f estd compuesto exactamente por la expresion x + 2. Si se requiere que el
cuerpo de la funcidén tenga mas lineas de cddigo, se puede iniciar un bloque en una nueva linea. Las
lineas que pertenecen al bloque estan espaciadas a la derecha por 4 espacios:

let f(x) :=
lety (=2
X +y

Listado 3: Ejemplo de declaracién de una funcién con un bloque de cédigo.
En este caso, la funcion f esta compuesta por un bloque de cddigo de dos lineas.

Para indicar el inicio de este bloque, el lexer emite un token Indent antes de emitir los correspondientes
al mismo. Tras haber emitido todos los tokens del bloque, se emite un Dedent para indicar el fin de este.

Este comportamiento también ocurre cuando hay bloques dentro de bloques, como en el siguiente
programa:

for i in 0..10 do
se emite el primer Indent
for j in 0..10 do
se emite el segundo Indent
mat[il[j] =1 + j
Se emiten dos Dedent seguidos

Listado 4: Ejemplo de bloques anidados.

El lenguaje de programacion Komodo

En este caso, el cuerpo del primer ciclo for es un un bloque de codigo, cuya tinica parte es otro ciclo
for, cuyo cuerpo es otro bloque de una sola linea. Después del primer do se emite un Indent. Después
del segundo do se emite otro Indent. Cuando se llega al final del texto, se emiten dos Dedent seguidos
para «cerrar» los dos bloques de cddigo que estaban «abiertos».

La razén para hacer esto es que al emitir estos tokens se pueden entender los bloques de codigo de
la misma forma que se hace con lenguajes donde los bloques estan delimitados con caracteres como
corchetes. Por ejemplo en JavaScript [3], este es un programa similar:

for (let i = 0; 1 < 10; i++) {
for (let j =0; j < 10; j++) {
mat[i][j] =1 + j;

Listado 5: Bloques anidados en JavaScript.

Los corchetes aqui cumplen la misma funcién que los Indent y Dedent en Komodo, solo que en este
caso tienen una correspondencia directa con caracteres del texto. En el caso de Komodo son un artificio
obtenido de contar espacios en blanco.

Esta es una descripcion de como el lexer decide emitir estos tokens:

1. El lexer cuenta el nivel de indentacion en el que se encuentra el programa en el punto en donde el
texto esté siendo leido. Cuando se esta al principio del programa, este nivel es cero.

2. Cuando se llega a una nueva linea, se quiere contar su nivel de indentacién. Esto se hace contando el
numero de espacios al principio de la linea. Cada 4 espacios son un nivel de indentacién. Si quedan
espacios sobrantes (es decir, el ntimero de espacios no es multiplo de 4), se ignora el residuo.

Por ejemplo, la linea de coédigo
println(x)
tiene 8 espacios al principio, por lo que su nivel de indentacién es 2.
Las lineas que estan compuestas exclusivamente de espacios o comentarios son ignoradas.

3. Una vez que se consumen y cuentan los espacios, y que se llega a un caracter que va a componer un
token, se compara el nivel de indentacion de la linea con el nivel de indentacién que el lexer guarda.

« Si son iguales, no se emiten tokens de mas: el resto de la linea es consumida.

« Si el nivel de la linea es mayor, se emiten tantos Indent como la diferencia entre el nivel de la
linea y el nivel guardado en el lexer, y se consume el resto de la linea.

« Sielnivel de lalinea es menor, se emiten tantos Dedent como la diferencia entre el nivel guardado
en el lexery el nivel de la linea. Luego se consume el resto de la linea.

Cabe destacar que la razon por la que hay que almacenar el nivel de indentacién es por que las
reglas con las que estos tokens son emitidos son dependientes del contexto: no basta con conocer el
caracter actual o una cantidad fija hacia adelante, sino, en general, es necesario poder recorrer todos
los caracteres recorridos antes. Una soluciéon mas sensible es almacenar un estado util (el nivel de
indentacion) para poder decidir cuando emitir los tokens.

Esta estrategia es la misma que usa el intérprete principal de Python, CPython.

El lenguaje de programacion Komodo

3.2. Analizador sintactico o parser

El analizador sintactico convierte sucesiones de tokens en nodos de un arbol que describe la estructura
sintactica del programa, conocido como CST (del inglés Concrete Syntax Tree). Este arbol contiene todos
los detalles del programa, y es generado casi en su totalidad de forma independiente del contexto. La
mayoria de la estructura del programa se obtiene de este paso.

El parserrecibe un stream de tokens, y retorna un stream de nodos del CST. En este punto, un programa
es una sucesion de nodos del CST.

Komodo es un lenguaje orientado a expresiones, lo que significa que hay una preferencia explicita a
que las sentencias del lenguaje retornen un valor.

Komodo tiene algunas sentencias cuya interpretacion méas natural son como declaraciones, pero ain
asi retornan un valor, que usualmente es la tupla vacia ().

Esto hace que en el anilisis sintactico todo sea considerado una expresion. No se define una distinciéon
entre declaraciones y expresiones.

El andlizador sintactico de Komodo es de descenso recursivo. Esto significa que esta compuesto de
funciones que se llaman mutuamente, donde (casi siempre) una funcion se encarga de procesar exclu-
sivamente una de las expresiones del lenguaje.

De forma similar a como ocurre con el analizador 1éxico, el analizador sintactico solo pasa por el stream
de tokens una vez para analizar todo el programa. No es necesario hacer regresos a partes del stream
previamente recorridas.

let x = 2

!

Let, Ident(x), Assign, Integer(2)

l

Let

Infix(Assign)

Symbol(x) Integer(2)
Listado 6: Ejemplo de paso de una sucesion de tokens a un nodo de CST

Para el analisis de expresiones infijas, el parser usa el algoritmo de escalada de precedencia (precedence
climbing en Inglés). Este es un algoritmo iterativo que funciona bien dentro de un analizador de
descenso recursivo, siendo mas simple que algunas de las alternativas, como el algoritmo Shunting
Yard. [4]

3.3. Post-analizador sintactico o weeder
El weeder toma un nodo del CST y realiza dos tareas:

« Eliminar detalles innecesarios para la evaluacion del codigo,
« Verificar condiciones del programa que serian mas dificiles de verificar en etapas anteriores.

El resultado es un nodo de un arbol de sintaxis abstracto o AST (del inglés Abstract Syntax Tree), que
no contiene detalles como la precedencia de operadores, espacios o indentacién. También convierte
ciertos operadores infijos en nodos mas restringidos, para facilitar la evaluacioén y eliminar estados

El lenguaje de programacion Komodo

indeseables. El tipo de errores que el weeder captura son de naturaleza sintactica y en muchas ocasiones,
dependientes del contexto.

A diferencia del lexer y del parser, cuyas entradas son streams, la entrada del weeder es un nodo
individual del CST. Cuando un programa es analizado, el weeder pasa por cada uno de los nodos
retornados por el parser de forma independiente.

La tarea del weeder es reescribir los nodos del CST para convertirlos en nodos del AST. Este proceso
puede fallar cuando el nodo de entrada no cumple caracteristicas que el weeder verifica. Por lo tanto, el
weeder puede retornar un nodo del AST o un error reportando la restriccién que la entrada no cumple.

Otra de las razones para afiadir el weeder como una fase independiente en lugar de integrar sus
funciones al parser, es controlar la complejidad del parser, que puede empezar a abarcar muchas reglas
rapidamente. Al costo de aumentar el nimero de componentes y hacer al intérprete potencialmente
mas lento, se conserva la facilidad para entender y modificar el parser. Por esta razon, hay transforma-
ciones que se realizan en el weeder a pesar de que podrian realizarse en el parser sin tanta dificultad.

El cambio de nodos del CST a nodos del AST también deja atras informacién que ya no es relevante,
como la precedencia de operadores. Esto crea barreras mas rigidas entre las fases del intérprete,
evitando que se acoplen [5, p. 83] demasiado.

let x = 2

!

let, Ident(x), Assign, Integer(2)

l

Let

Infix(Assign)

Symbol(x) Integer(2)

!

Declaration(Inmutable)

N

Symbol(x) Integer(2)
Listado 7: Ejemplo de paso de un nodo de CST a uno de AST

4. Ejecucion de programas

4.1. El modelo de ejecucion

Un programa de Komodo esta hecho de mddulos de codigo. Un modulo de codigo es creado cada
vez que:

« se ejecuta un archivo con cédigo,
+ se inicia una sesion del REPL.

Un archivo con coédigo es ejecutado cuando el usuario lo solicita usando la interfaz de linea de
comandos, o cuando es importado desde otro moédulo.

Toda ejecucion de un médulo de codigo tiene su propio entorno.

El lenguaje de programacion Komodo

foo.komodo # bar.komodo
let foo(x) := x * x let bar() :=5

!

from "./foo.komodo" import foo
from "./bar.komodo" import bar
let x := bar()

println(foo(x))

Listado 8: Ejemplo de un programa de Komodo. Hay 3 médulos y 3 entornos.

El que haya una correspondencia exacta entre entornos y moédulos de coédigo es conveniente para
razonar facilmente sobre los médulos: son unidades aisladas que se comunican entre si mediante la
importacién de variables.

4.1.1. Entornos
Un entorno esta compuesto de una pila de scopes. Un scope es una tabla que hace corresponder nombres
con objetos.

El estado inicial de todo entorno tiene un scope, y siempre va a tener al menos un scope.
Se aflade un nuevo scope al entorno cada que:

« Se ejecuta una funcién,
« Se ejecuta un ciclo,
« Se ejecuta un bloque de c6digo indentado.

Después de ejecutar el c6digo en cada uno de estos casos, el scope es eliminado del entorno.
Cuando se ejecutan archivos con cddigo, los entornos también guardan la ruta del archivo en el sistema

de archivos local, y la ruta de la terminal donde fue ejecutado el intérprete.

4.1.2. Evaluador

Todos los mddulos de coédigo son ejecutados por separado. Para ejecutar un moédulo de codigo, se
ejecuta cada uno de los nodos del AST que lo componen, en orden, con el mismo entorno que va siendo
potencialmente modificado tras cada ejecucion. El estado inicial del entorno es el descrito previamente.

Esto hace que un entorno sea el inico lugar donde se conserva el estado de ejecuciéon de un moédulo.

4.2. Variables

Komodo permite la declaraciéon de variables inmutables usando la palabra clave let. También se
permite la creacion de variables mutables con la palabra clave var.

var x := 5
lety :=a ->a+a *2

Listado 9: Ejemplos de declaraciones en Komodo.

4.2.1. Resolucion de nombres

Cuando un nombre es referenciado en el codigo, se busca en el entorno de la siguiente forma:

« Si se referencia para ser mutado (por ejemplo, al escribir x := 5), se comienza buscando desde el
scope al tope de la pila hasta el de mas abajo. Se retorna la primera coincidencia encontrada. Si la
variable no se encuentra en el scope al tope, se interrumpe la busqueda cuando se pasa por el scope
generado por la ejecucioén de una funcién. Si la variable no es encontrada, también se interrumpe la
ejecucion con un error.

El lenguaje de programacion Komodo

Por ejemplo, en el siguiente ejemplo de c6digo, la variable x es encontrada y modificada:

var res := 0
for i in 0..3 do
res := res + i

assert(res = 3)

Listado 10: Ejemplo de uso ordinario de una variable mutable.

Sin embargo, en este ejemplo el intérprete retorna un error:

var res := 0
let f() :=
for i in 0..3 do
res :=res + 1i

()
assert(res = 3)

Listado 11: Ejemplo de uso no permitido de una variable mutable.

En la implementacion actual, el intérprete de Komodo comunica que la variable existe, pero que no
puede ser mutada.

« Si se referencia una variable para obtener su valor (por ejemplo, al escribir cur + 10), se comienza
buscando desde el scope al tope de la pila hasta el de mas abajo. Se retorna la primera coincidencia
encontrada. Si la variable no es encontrada, se interrumpe la ejecucion del programa con un error.

4.2.2. Copiado de valores

Komodo no tiene una nocién de referencia. En el contexto de la dicotomia valor-referencia, en Komodo
solo se manipulan valores. Esto hace que los detalles internos sobre referencias a valores y el copiado
de valores sean invisibles al usuario.

El intérprete usa referencias siempre que es posible. Cuando una variable inmutable es asignada como
el valor de otra variable inmutable, lo que se obtiene es una referencia a la variable original.

Sin embargo, siempre que esta variable haga parte de un calculo o un procedimiento, se va a hacer una
copia.

Cuando el valor de una variable es asignado a otra variable mutable, siempre se hace una copia.
Salvo por los tipos Char y Bool, la inicializacién de todos los tipos de Komodo requieren la solicitud

de memoria en tiempo de ejecucién. Por esta razon, se prefiere la creacion de referencias en lugar de
crear copias.

4.2.3. Variables y tipos

En Komodo, los tipos estan asociados a valores, y no a variables. Esto permite que una variable pueda
ser declarada con un valor con cierto tipo, y luego se le pueda asignar otro valor, con otro tipo. Esto
es conocido como tipado latente.

var x := 2
X := II2II

Listado 12: Ejemplo de una variable mutada con distintos tipos.

El lenguaje de programacion Komodo

4.2.4. Ocultamiento o shadowing

Una variable puede ser declarada varias veces con el mismo nombre, incluso en el mismo scope. Esto se
conoce como shadowing. Es una caracteristica conveniente dada la tendencia del intérprete a funcionar
con referencias, y es un medio para reciclar nombres en rutinas donde esto es tutil.

Cabe destacar que el ocultar una variable con un nuevo valor no afecta los usos previos al ocultamiento.
Un ejemplo de esto se muestra en el siguiente programa:

let f() :=1
let g() := f()

let f() :=2
let h() := f()
let f() := 3

|
=
~

assert(g() =
assert(h() = 2)
Listado 13: Ejemplo de shadowing.

Aqui, la funcién g retorna 1, que es el valor de la funcién f cuando g fue definida. Lo mismo sucede
con la funcidén h, que retorna 2. El hecho de que luego f retorne 3 no afecta a ningin uso previo.

4.2.5. Mutabilidad restringida
La mutabilidad de variables esta restringida por dos reglas:

« Las tnicas variables mutables son las que han sido inicializadas usando var. Por ejemplo, la asigna-
cién dentro de esta funcion no esta permitida, pues hay una asignacién a uno de los argumentos:

let f(x) :=
println(x)
X 1 =x -1

Listado 14: Ejemplo de asignacion ilegal a un argumento (siempre son inmutables).

+ Dentro de una funcién, no se puede modificar el valor de una variable definida fuera de la funcion.
Este es un ejemplo minimo:

var x := 0
let f() :=
X =1

Listado 15: Ejemplo de asignacion ilegal a una variable.
El propésito de estas reglas es restringir los casos de uso de un estado mutable.
4.3. Importacion de codigo

Komodo tiene sintaxis para importar moédulos de cédigo externos, ya sea de la libreria estandar o de
archivos con codigo del sistema de archivos local.

Por ejemplo, para importar funciones del médulo utils de la libreria estandar, basta escribir

from utils import (map, reduce)
(0..5)
.map(a -> a*a)
.reduce((acc, cur) -> acc + cur, 0)

Listado 16: Ejemplo de uso de la libreria estandar.

El lenguaje de programacion Komodo

Por otro lado, para importar c6digo de un archivo local, hay que pasar una cadena con la ruta corres-
pondiente, en lugar del nombre del médulo. Este es un ejemplo:

from "/tmp/foo.komodo" import VALUE
println(VALUE)

Listado 17: Ejemplo de importacion de coédigo externo.

Komodo permite la importaciéon de cualquier valor, no sélo funciones.

4.3.1. Comportamiento de las sentencias import
Las sentencias from <module> import <values> pueden ponerse en cualquier parte de un programa.
Siempre retornan la tupla vacia ().

Este es el procedimiento que realizan:

+ Se obtiene un entorno derivado del médulo solicitado.
» Sielmodulo solicitado corresponde a c6digo de Komodo, todo este codigo es ejecutado, obteniendo
un entorno.
» Si el modulo solicitado no corresponde a cédigo de Komodo, entonces debe ser un médulo de la
libreria estandar para el que se cre6 un entorno correspondiente previamente, que es retornado.

+ Ya con el entorno, los nombres solicitados son obtenidos del mismo e introducidos en el scope al
tope del entorno del médulo que se esta ejecutando actualmente (en el que fue escrita la sentencia).

Notese que una sentencia import puede ponerse en cualquier punto de un programa, por lo que puede
afectar un scope especifico. En el siguiente ejemplo, se realiza una importacién y solo se aiaden los
nombres importados al scope donde se realiz6 la importacién:

let f(x) :=
from math import sqrt
X + sqrt(x)

sqrt(5) # error!

Listado 18: Importacién en un scope especifico.

En este caso se import6 la funcion sqrt dentro del scope de la funcion f, por lo que no afecta a los
scopes anteriores, y la funcién no sera encontrada en estos.

Otra caracteristica a destacar de la importacion de modulos es que al importar elementos de un archivo
con cddigo, todo el archivo es ejecutado; independientemente de cuantos nombres se soliciten.

4.4. Busqueda de patrones o Pattern matching
La busqueda de patrones es una forma de verificar propiedades en valores de Komodo. Por ejemplo, el
siguiente programa busca patrones en una lista:

let len(list: List) :=
case list do
(1 =>0
[|tail]l == 1 + len(tail)
Listado 19: Ejemplo de bisqueda de patrones en Komodo.

En este ejemplo hay una lista de parejas, que hacen corresponder patrones y resultados.

El primer patrén expresa que si la lista referenciada por 1ist esta vacia, su longitud es 0.

10

El lenguaje de programacion Komodo

El segundo dice que si la lista estd compuesta de un elemento al principio y otra lista con los demas,
referenciada con tail, su longitud es de 1 mas la longitud de tail.

La busqueda de patrones permite describir procedimientos como listas de reglas. También permite usar
la estructura de un valor para obtener otros valores de su interior. Vamos a describir estos casos de uso.

4.4.1. Descripcion de procedimientos
Como se mostrd en el ejemplo anterior, se pueden describir procedimientos con patrones. Komodo
tiene dos mecanismos para hacer esto.

- Patrones en funciones
Las funciones en Komodo pueden definirse en varias declaraciones separadas, donde se pueden poner
patrones diferentes. Por ejemplo, esta es una forma de definir la funcioén de Fibonacci:

let fib(0) := 0
let fib(1l) :=1
let fib(n) := fib(n - 1) + fib(n - 2)

Listado 20: Funcion de Fibonacci en Komodo.

Los parametros de la funcion pueden escribirse como patrones, que cuando la funcién sea llamada,
seran comparados con los argumentos en orden. El resultado asociado a la primera lista de patrones que
sea compatible con los argumentos sera el resultado de la llamada. Sin ningin patrén es compatible,
el programa se detiene con un error.

- Expresiones case

No es necesario usar funciones para escribir procedimientos con patrones. Se puede usar una expresion
case:

case X % 2 do
0 => "x es par"
1 => "x es impar"

Listado 21: Ejemplo de uso de una expresion case.

El comportamiento es el mismo: los patrones son comparados con la expresiéon en orden, y el primer
patron compatible determina el resultado. Si ningin patrén es compatible, el programa se detiene con
un error.

4.4.2. Desestructuracion
Se pueden usar patrones en definiciones para extraer valores del interior de otros valores:

let coordinates(n) := (n + 1, n * 2)
let (x, y) := coordinates(0)
assert(x = 1)

assert(y = 0)

Listado 22: Ejemplo de desestructuracion en Komodo.

En este ejemplo, se compara el patron a la izquierda de la asignacion con el valor de coordinates(0).
En este caso el patron es compatible: el valor es (1, 0). Asi, se asigna a x el valor 1y ay el valor 0.

Cuando el patrén no es compatible, el programa se detiene con un error.

También se pueden desestructurar valores en ciclos for:

11

El lenguaje de programacion Komodo

from utils import map
let coordinates(n) := (n + 1, n * 2)
for (x, y) in (0..5).map(coordinates) do println(x + y)

Listado 23: Ejemplo de desestructuracion en un ciclo for.
El comportamiento es el mismo que se da cuando se hace una declaracion, solo que se repite al principio

de cada iteracion.

4.5. Tipos

Komodo es un lenguaje con tipado latente, gradual y dinamico. Esto hace considerar facilmente a
Komodo como un lenguaje de tipado débil. Describamos estas caracteristicas.

4.5.1. Latente

Los tipos de Komodo no estan asociados a simbolos, sino a valores. La principal consecuencia de esto
es que un simbolo puede tener valores de distintos tipos en momentos diferentes. Esto es 1til para la
reutilizacién de nombres, por ejemplo.

4.5.2. Gradual

Se pueden afiadir chequeos de tipos a un programa de Komodo de manera opcional, y a conveniencia.
Estos chequeos se realizan en tiempo de ejecucién. Por ejemplo, en este programa hay un chequeo de
tipos:

let first(list: List) := list[0]

Listado 24: Chequeo de tipos en Komodo.
Notese que hay patrones que realizan chequeos de tipos implicitos:

let some({res| }: Set) := res

Listado 25: Chequeo de tipos redundante.

En este ejemplo, verificar que la entrada es de tipo Set es redundante, pues el patréon {res| } solo es
compatible con valores de tipo Set. Bastaria con escribir la funcién asi:

let some({res| _}) := res

Listado 26: Chequeo de tipos implicito.

4.5.3. Dinamico

Todos los chequeos de tipos en programas de Komodo se realizan en tiempo de ejecucién. Esto hace
que la implementacién de reglas de tipado débil sea mas sencilla, con la consecuencia de que deben
realizarse mas chequeos en tiempo de ejecucion.

4.5.4. Los tipos incorporados

Komodo viene con tipos incorporados que facilitan la creacién de procedimientos basicos, y son
herramientas que se esperan en cualquier lenguaje de programacion de propoésito general. Sin embargo,
la eleccion de los tipos incorporados de Komodo refleja sus preferencias de uso.

- La tupla vacia
Esta representada por (). Es en la practica el tipo nulo de Komodo.

Es importante recalcar que la tupla vacia no es un tipo separado (como sucede con el tipo unitario en
lenguajes como Haskell o Rust), sino que realmente el intérprete lo considera una tupla sin valores.

12

El lenguaje de programacion Komodo

Esta caracteristica hace a () mas cercano a un tipo nulo, tipico de los lenguajes de programaciéon
imperativos; que a un tipo unitario, tipico de los lenguajes de programacion funcionales.

La tupla vacia es un patrén que se puede rastrear:

let isNull(()) := true
let isNull() := false

Listado 27: Pattern matching con la tupla vacia.
También puede usarse el operador de igualdad:

let isNull(val) := val = ()

Listado 28: Comparacion con la tupla vacia.
Este ejemplo muestra como realmente () es representado como una tupla:

let isTuple(: Tuple) := true
let isTuple() := false

assert(().isTuple())

Listado 29: Tipo de la tupla vacia.

- Nimeros

Komodo tiene tres representaciones para nimeros: Enteros, flotantes y fracciones. Todos tienen
tamafio arbitrario, que crece bajo demanda. El intérprete usa las librerias GMP y MPFR, que hacen
parte del proyecto GNU y estan disefiadas para funcionar juntas.

- Enteros

Los enteros tienen signo y tienen las operaciones de suma, resta, multiplicacion, divisién, residuo,
exponenciacion y desplazamiento de bits, tanto a la izquierda como a la derecha. Los bits mas signifi-
cativos estan a la izquierda. Son representados en tiempo de ejecucion como arreglos dindmicos de
enteros de longitud de la palabra de maquina de ejecucioén. El signo va por separado.

La generacion de enteros de Komodo requiere, en general, de solicitar memoria en tiempo de ejecucion.
Este es un proceso costoso en términos de tiempo.

Se pueden escribir constantes en base 2, 8, 10 y 16. No hay diferencia entre dos enteros que representan
la misma magnitud, independientemente de la base en que fueron escritos.

let eights := {
0b1000,
0ol0,
8,
0x8,

assert(eights = {8})

Listado 30: Enteros de Komodo.

La implementacion de los enteros es traida de la libreria GMP. [6]

- Nameros de punto flotante
Los nimeros de punto flotante de Komodo son una extension de los descritos por el estandar IEEE 754,
con las siguientes diferencias:

13

El lenguaje de programacion Komodo

« El tamafio de la mantisa puede ser mayor que 53 bits.
« El tamafio de la mantisa puede variar entre diferentes instancias de los nimeros.
« El tamafio de la mantisa se decide en el momento que un nimero es instanciado.

Puesto que la representacion de estos niimeros es binaria, viene con las caracteristicas tipicas de los
numeros de punto flotante de maquina. En particular, no todos los nimeros decimales son represen-
tables por estos nimeros. Este es un ejemplo comun:

let x := 0.1

Listado 31: Numeros de punto flotante en Komodo.

En este caso, x tiene un redondeo muy cercano a 0.1, pero no es exactamente 0.1, por el hecho de que
0.1 no puede ser representado con un mantisa y un exponente binarios.

La generacion de flotantes requiere de la solicitud de memoria en tiempo de ejecucion.

La implementacién de los nimeros de punto flotante es traida de la libreria MPFR [7], que es una
extension de la libreria GMP.

- Fracciones

Las fracciones tienen signo y tienen las operaciones de suma, multiplicacién, divisién y exponencia-
cién. Son representados como un par de enteros de longitud arbitraria, por lo que se pueden realizar
operaciones con nimeros arbitrariamente grandes o pequerios.

La utilidad de las fracciones viene cuando es necesario hacer operaciones sin redondeos, con el costo de
menor velocidad. Las fracciones pueden representar todos los nimeros que los enteros y los flotantes
pueden representar, y mas.

Se escriben con dos barras inclinadas:

let a
let b

5
1//5

assert(a * b = 1)
Listado 32: Fracciones de Komodo.

La generacién de fracciones también requiere de la solicitud de memoria en tiempo de ejecucion.

La implementacion de las fracciones es traida de la libreria GMP.

- Funciones

Las funciones de Komodo pueden escribirse de dos formas:
+ De forma anénima, como una lista de parametros y un bloque de codigo:

(a, b) ->a+b -5

Listado 33: Funcién anénima de Komodo.

Estas funciones son expresiones, asi que pueden ser puestas dentro de contenedores o ser guardadas
como variables.

 con nombre, como una lista de parejas patron-resultado:

14

El lenguaje de programacion Komodo

let f(O,) =0
let f(_, 0) :=0
let f(a, b) :(=a+b -5

Listado 34: Funcion nombrada de Komodo.

Las funciones nombradas son siempre inmutables, asi que no pueden crearse con la palabra clave
var. Ejecutar esta pieza de c6digo retorna un error:

var f(x) := 2*x

Listado 35: Declaracion ilegal de una funcion.
Todas las funciones de Komodo pueden ser pasadas como argumentos de otras funciones.

Los scopes de Komodo son creados de forma léxica, lo que significa que los nombres referenciados en
la funcién son los que se obtienen en el contexto de la definicién de la funcién, y no en el contexto de
sus ejecuciones. Usemos como ejemplo el siguiente fragmento de codigo:

let a := 2
let func := () -> a

for i in 0..5 do
let a := i
assert(func() = 2)

Listado 36: Scope 1éxico en Komodo.

En este caso, a pesar de que la func es ejecutada en un scope donde el valor de a varia, siempre usa
el valor que a tenia cuando fue definida. Esta regla limita la forma en que se puede interpretar una
llamada a una funcion, lo que puede ser conveniente al analizarla.

- Caracteres y cadenas

Komodo, a diferencia de muchos lenguajes de scripting, tiene tipos separados para representar carac-
teres y cadenas. Esto puede ser ttil a la hora de iterar sobre cadenas y de hacer tratamiento minucioso
de cadenas. Los dos tipos operan juntos, y se realizan conversiones implicitas entre ellos cuando es
conveniente.

- Caracteres
Los caracteres de Komodo son valores escalares de Unicode, por lo que pueden representar cualquier
simbolo Unicode. Tienen una longitud fija de 32 bits.

Su sintaxis es muy similar a la de las cadenas, s6lo que usa comillas simples:

let a := 'a'
Listado 37: Declaracion de un caracter en Komodo.

Todos los caracteres son patrones que pueden ser rastreados, y también se puede restringir la entrada
de una funcién por su tipo:

15

El lenguaje de programacion Komodo

let isAnA('a' || 'A') := true
let isAnA() := false

let isChar(: Char) := true

let isChar() := false

assert(isAnA('a'))
assert(isChar('b'))

Listado 38: Patttern mathing de caracteres.

Los caracteres pueden ser sumados entre si para sumar cadenas, y pueden ser sumados con cadenas
para producir otras cadenas. También pueden ser multiplicados por un entero para concatenarse a si
mismas varias veces:

assert('a'+'b'="ab") # Char + Char
assert('a'+"bc"="abc") # Char + String
assert('z'*3="zzz") # Char "multiplicado"

Listado 39: Operaciones con caracteres en Komodo.

- Cadenas

Las cadenas de Komodo estan representadas como arreglos inmutables de bytes, que estan codificados
con UTF-8.

Se puede iterar de izquierda a derecha sobre las cadenas de Komodo de la misma forma que se hace
con las listas. Este es un detalle importante y que puede ser confuso. El patréon [first|tail] (o patréon
cons) es compatible con listas y cadenas. Veamos un ejemplo:

let length([1 || "")
let length([_ |taill)

0
1 + len(tail)

assert(length([1, 2]) = length("ab"))
Listado 40: Patron cons para listas y cadenas.

En este ejemplo, se muestra que para que la funciéon length funcione para listas y cadenas, el patron
[1 || "" debe usarse, y asi tener en cuenta ambos casos. Sin embargo, el patréon [|tail] funciona
para cadenas y listas por igual. Esto hace que la compatibilidad con el patrén cons no garantice que el
argumento pasado sea una lista. En efecto, podria ser una lista o una cadena de caracteres.

Ademas, ndtese que una lista de caracteres es diferente a una cadena:

assert(['a', 'b'] /= "ab")

Listado 41: Diferencia entre cadenas y listas de caracteres.

La diferencia entre cadenas y listas de caracteres es una caracteristica traida de otros lenguajes como
un detalle de implementacion, pero conflictiia con la preferencia de Komodo de entender a los datos
con la menor cantidad de detalles de implementacién posible.

- Contenedores
Los contenedores almacenan otros valores, incluyendo los de su mismo tipo. Todos los contenedores
de Komodo permiten almacenar valores de diferente tipo en el mismo contenedor simultineamente.

- Tuplas
Las tuplas son colecciones ordenadas de valores, que no crecen. Su propdsito es juntar valores. Pueden
escribirse como valores separados por comas, rodeados por paréntesis.

16

El lenguaje de programacion Komodo
(5, "cinco", (a) -> a + 5)

Listado 42: Tuplas de Komodo.
Sin las tuplas, quedarian dos soluciones para tener valores compuestos:

« Usar un diccionario: Esta solucion esta bien, pero puede ser demasiado complicada para algunos
problemas. Ademas, puede operarse con otros diccionarios, lo cual puede ser indeseable.

+ Usar una lista: Es una solucion muy similar, pero sigue estando el problema de que pueden ser
operadas con otras listas, lo cual puede ser indeseable.

Estas dos soluciones usan tipos con un propésito muy claro, y estarian siendo usadas de manera
ligeramente distinta. La mayor utilidad de las tuplas es declarar la intencion de que los datos en ellas
deberian estar juntos.

La tupla vacia, mencionada al principio de esta seccidn, es una tupla y no un tipo por separado. (véase
Seccion -)

- Listas

Las listas de Komodo son de longitud arbitraria.
Se puede acceder a sus elementos de tres formas:

« Con indices enteros indexados desde cero, usando la notaciéon list[index]. Esto es util para escribir
procedimientos iterativos que involucran el orden en que se encuentran los elementos, y se accede
a multiples partes de la lista en un mismo paso:

let reverse(l: List) :=
var res := 1
for 1 in 0..(len(1)/2) do
res[i] := 1[len(l)-i-1]
res[len(l)-i-1] := 1[i]

res
Listado 43: Reverso de una lista en Komodo.

El acceso por indice a un indice ilegal (negativo o, mayor o igual que la longitud de la lista) hace que
el programa sea interrumpido con un error.

« Iterando sobre la lista de izquierda a derecha, con la notacién [first|tail]. Esto funciona bien para
la mayoria de casos de uso, y permite la escritura sencilla de procedimientos recursivos:

let max(a, b) := if a > b then a else b
let max([val]l) := val
let max([first|tail]: List) := max(first, max(tail))

Listado 44: Maximo de una lista en Komodo

« Iterando sobre la lista con expresiones por comprensioén o en ciclos:

17

El lenguaje de programacion Komodo

let list := [1, 2, 1, 2]

let set := {val for val in list}
assert(set = {1, 2})

var acc := 0
for val in list do
acc := acc + val

assert(acc = 6)

Listado 45: Iteracion sobre listas.

El intérprete las almacena como arreglos dinamicos. Esta es una representacién conveniente para
minimizar la solicitud de memoria en tiempo de ejecucion y para la velocidad del acceso por indice,
pero no tanto para la creacién de sublistas obtenidas de la lista donde se itera.

- Conjuntos
Los conjuntos de Komodo son de longitud arbitraria. Se puede iterar sobre ellos y verificar la perte-
nencia de elementos.

Estan representados como arboles binarios de busqueda.
Los conjuntos tienen su propia sintaxis, y pueden ser escritos por extensiéon o por comprension:

let A := {1, 2, 4, 8, 16} # por extensidn
let B := {2**k for k in 0..5} # por comprensién

assert(A = B)

Listado 46: Conjuntos de Komodo.
Se puede iterar sobre sus elementos de varias maneras:
 Usando la notacion cons para conjuntos:

let prod({}) :=1
let prod({some|rest}) := some * prod(rest)

Listado 47: Notacién cons para conjuntos.
Esta notacion funciona de la misma forma que la notacion cons de listas.

La implementacion actual garantiza que los elementos son recorridos en orden, pero esta caracte-
ristica podria cambiar.

+ Usandolo como iterador en contenedores por comprension y ciclos:

let set := {1, 2, 2}
var list := []
for val in set do
list := [val]|list]
assert(list = [1, 2] || list = [2, 1])

let list := [val + 1 for val in set]
assert(list = [2, 3] || list = [3, 2])

Listado 48: Iteracién sobre conjuntos.

18

El lenguaje de programacion Komodo

Para verificar que un elemento pertenece a un conjunto, puede usarse el operador in:
let A := {1, 2}
assert(l in A)
Listado 49: Pertenencia de conjuntos.

Los conjuntos también pueden verificar contenencia e igualdad entre ellos, y se tienen las operaciones
de unioén y diferencia:

let A := {1, 2}

let B := {2, 3}
assert(A + B = {1, 2, 3})
assert(A - B = {1})
assert(A - B

(

< A) # contenencia estricta
)

assert(A <= A) # contenencia o igualdad

Listado 50: Operaciones entre conjuntos.
Los conjuntos pueden ser desestructurados y rastreados con patrones:
let {a, b} := {1, 2}
assert(a + b = 3)
Listado 51: Desestructuracion de conjuntos.

La razén de que los conjuntos sean estructuras de primera clase es evitar que el usuario los implemente
incidentalmente como parte de la implementacion de ciertas rutinas. Esta situaciéon es muy comin en
el tipo de problemas a los que Komodo apela.

- Diccionarios

Los diccionarios de Komodo son de longitud arbitraria. Son colecciones de parejas llave-valor, donde
el tipo de ambos es arbitrario.

Los diccionarios deben ser inicializados con al menos un elemento, pues la expresiéon {} genera un
conjunto:

let set := {} # conjunto
let dict := { () => () } # diccionario
Listado 52: Construccién de diccionarios.
Se puede acceder a sus elementos de dos formas:
« Notacion usual: dic[1lave] donde dic es un diccionario y 1lave es un valor arbitrario.

Esta notaciéon permite usar cualquier valor de Komodo como una llave. Por ejemplo, aqui usamos
listas y conjuntos como llaves:

let dict := {
[[11, [2]] == 3,
{2, 3, 4} = 9,
}

assert(dict[[[1], [2]11] = 3)
assert(dict[{2, 3, 4}] = 9)

Listado 53: Diccionarios con llaves arbitrarias.

19

El lenguaje de programacion Komodo

« Notacion de objeto: objeto.1lave, donde objeto es un diccionario y 1lave es interpretado como
una cadena, que es buscada en el diccionario.

Esto es equivalente a escribir objeto["1lave"]. Aunque confusa, esta notacion es una facilidad para
usar los diccionarios de una forma muy particular: como si fueran estructuras.

Este es un ejemplo:

var data := {
"values" => [1, 2, 31,
"length" => 3,

}

assert(data.length = 3)

assert(data.values = [1, 2, 3])

data.values := [val + 1 for val in data.values]

assert(data.values = [2, 3, 4])

data["values"])
data["length"])

assert(data.values
assert(data.length

Listado 54: Diccionarios como estructuras.
La busqueda de una llave que no se encuentra en un diccionario interrumpe el programa con un error.

Enlaimplementacién actual, no se puede iterar sobre diccionarios. Sin embargo, si pueden ser buscados
con patrones:

let dict := {
[[11, (211 == 3,
{2, 3, 4} == 9,

let f({x == 9, ..}) :=x
assert(f(dict) = {2, 3, 4})

Listado 55: Patrones con diccionarios.

Los diccionarios estan representados como arboles binarios de biisqueda, igual que los conjuntos. Esto
podria cambiar en el futuro.

4.6. El intérprete

El intérprete estd escrito en el lenguaje de programacioén Rust. [8] El ecosistema de Rust, de manera
similar a lenguajes como OCaml, [9] es favorable para construir herramientas para lenguajes de
programacion. El modelo de memoria de Rust no incluye manejo de memoria automatico, sino un
sistema que permite verificar reglas que garantizan seguridad de memoria en tiempo de compilacién.

El intérprete de Komodo es distribuido como un binario enlazado estaticamente cuando es posible, y
estd organizado como un monolito.

Para la comunicacion con el sistema operativo, se usa la libreria estandar de Rust: Hasta ahora, no ha
sido necesario interactuar con una interfaz méas cercana.

4.7. Gestion de memoria
La memoria de un programa de Komodo es gestionada automaticamente. Ademas, no hay una nocién
de referencia (véase Seccidén 4.2.2.). Todo valor declarado con let debe ser constante, y todo valor

20

El lenguaje de programacion Komodo

declarado con var puede cambiar de acuerdo a las restricciones de mutabilidad (véase Seccion 4.2.5.).
Estas son las invariantes que el usuario de Komodo puede asumir.

La implementacion de estas reglas es arbitraria, y en el caso del intérprete de Komodo, esta en
desarrollo.

Para gestionar el uso interno de referencias y copias, el intérprete usa las siguientes reglas:

« Siun valor inmutable es asignado a otro valor inmutable, se asigna internamente una referencia en
lugar de copiar.

« Siun valor inmutable es asignado a un valor mutable, se asigna una copia.
« Siun valor mutable es asignado a un valor cualquiera, se asigna una copia.

« Siun valor cualquiera es pasado como argumento a una funcién, se pasa una referencia inmutable,
siguiendo la semantica de las funciones (véase Seccidén 4.2.5.).

« En cualquier otro caso, se pasa una copia.

Las reglas actuales no tienen en cuenta que deberia suceder en situaciones que involucran contene-
dores, donde pueden aparecer referencias ciclicas, por ejemplo. El comportamiento actual en estos
casos es crear copias.

El intérprete usa conteo de referencias para hacer recoleccion de basura automéaticamente.

Se planea implementar una estrategia de mark-and-sweep, donde de manera periddica se recorre un
grafo de referencias del programa. Las referencias alcanzadas durante el recorrido son conservadas,
y las no alcanzadas son eliminadas. Luego las secciones de memoria que no tuvieron referencias
alcanzadas son liberadas.

4.8. Conversiones implicitas de valores
Komodo realiza conversiones de valores sin intervencion del usuario, pero con reglas simples. Estas
conversiones en dos grupos de tipos.

4.8.1. Numeros
Cuando dos nimeros de diferente tipo son las entradas de una operacion aritmética, una de las entradas
es convertida al tipo de la otra.

Los tipos numéricos son Integer, Fraction y Float. Cuando se realiza una operacién permitida entre
cualesquiera dos valores con estos tipos, y los tipos son diferentes, se realiza una conversién de acuerdo
a las siguientes reglas, verificadas en orden:

« Siuno de los valores es de tipo Float, el otro es convertido a Float.
+ Siuno de los valores es de tipo Fraction, el otro es convertido a Fraction.

Estas reglas abarcan todos los casos donde los operandos son de un tipo numérico distinto. Las
reglas implicitamente implementan la nocién de una torre numérica [10, p. 19], [11], donde los tipos
numéricos respetan la siguiente jerarquia (en orden descendente):

« Float
« Fraction
« Integer

Aunque realmente el tipo Fraction es el que puede expresar mas nimeros de todos los tipos numeéricos,
operar con nimeros de punto flotante es usualmente mas esperado y menos sorprendente que con

21

El lenguaje de programacion Komodo

fracciones. En efecto, asi lo hacen las jerarquias en [10] y [11]. Esta es la razén de que Float esté al
tope de la jerarquia.

4.8.2. Caracteres y cadenas

Cualquier concatenacién que involucre un caracter tendra como resultado una cadena. Es decir:

assert({"ab"} - {Ial + Ibl' |a| + ”b", ||a|| + |b|})

Listado 56: Conversion de caracteres.
Esta regla también aplica para la concatenacion de un caracter consigo mismo, usando el operador *:

assert({"aaa"} = {'a'*3, 3*'a'})

Listado 57: Conversion de caracteres.

5. Aspectos periféricos
Komodo, como proyecto, incluye piezas adicionales al intérprete, asi como procesos de trabajo para
crearlas. Esta seccién enumera estos elementos y los explica brevemente.

5.1. Software adicional

Hay software adicional al intérprete que lo asiste o extiende su alcance.

5.1.1. Editor web
Una compilacion del interprete a WebAssembly o WASM [12] es usada para poder usar el intérprete
en el editor web de Komodo. Es una version sin la libreria estandar y con una interfaz simulada del
sistema operativo.

WASM es un objetivo de compilacion sin una maquina de destino especifica. Su enfoque es la ejecucion
de c6digo en ambientes aislados e independientes de la maquina de ejecucion. En este caso, el intérprete
se compila a WASM para ejecutarlo en navegadores de Internet. Los navegadores mas populares ya
pueden ejecutar WASM.

La compilacion del intérprete a WebAssembly se logra con el control de las dependencias de Komodo.
En particular, se genera una version del intérprete donde todas las dependencias pueden ser compiladas
a WASM. Esto hace que la version para el navegador sea ligeramente distinta a la versién nativa. Estas
son las principales diferencias:

« La importacién de modulos no estd implementada. Ni los médulos de la libreria estandar, ni la
importacion de archivos con cddigo hacen parte de la version para navegadores.

« Las funciones incorporadas que usan la entrada y salida estandar usan una interfaz simulada, que
en realidad interactia con la interfaz de usuario en el navegador.

« No hay un REPL, a diferencia de la version nativa.

Esta version modificada del intérprete es compilada a WASM. El binario obtenido es optimizado y luego
empaquetado con una interfaz hecha en JavaScript, con la que el editor web de Komodo interactia para
ejecutar codigo escrito por el usuario. Asi, se evita tener que enviar el cddigo a un servidor, ejecutarlo
alli, y devolver los resultados. La ejecucion de los programas en el editor web ocurre del todo en la
maquina del usuario.

Esta grafica explica el paso desde el intérprete original a la versiéon para navegadores:

22

El lenguaje de programacion Komodo

Codigo original

l

Eliminacion de dependencias
Desacoplado del sistema operativo

!

Coédigo compilable a WASM

l

Compilacion a WASM
l

Binario de WASM

!

Optimizacién y empaquetado
l

Paquete con interfaz en JS
!

Despliegue a la web

!

Editor web de Komodo

23

El lenguaje de programacion Komodo

5.1.2. Resaltado de sintaxis

Se escribié una gramatica de TextMate [13] para los tokens de Komodo, y asi obtener resaltado de
sintaxis en los editores de texto compatibles. Se distribuye una extension para los editores VSCode y
VSCodium, que afiaden resaltado de sintaxis para Komodo a los archivos con extensién . komodo.

5.1.3. Instaladores

Se distribuye un script para instalar Komodo en distribuciones GNU/Linux, con maquinas con arqui-
tectura AMD64. El instalador anade al sistema un binario enlazado estaticamente y los archivos de la
libreria estandar. Puede usarse ejecutando el siguiente comando, que instala la versién de Komodo mas
reciente:

curl --proto '=https' --tlsvl.2 -sSf https://komodo-lang.org/install.sh | sh

Se planea distribuir binarios e instaladores para MacOS y Windows, asi como para més arquitecturas,
en particular ARM64.

5.2. Guia de uso

Esta publicada una guia de uso de Komodo en https://komodo-lang.org/book. El propodsito del
material es asistir a cualquier persona interesada en Komodo en el aprendizaje del lenguaje y en el uso
del ecosistema. La guia estd en constante cambio de acuerdo a como el lenguaje cambia. Se desea que
la guia sea el recurso por defecto para aprender a usar Komodo.

6. Gramatica de Komodo

6.1. Lista de tokens

Esta es una lista de los tokens que el analizador léxico emite, y las reglas que hacen que sean emitidos. Se
muestran expresiones regulares para algunos tokens con el propdsito de ilustrar las reglas rapidamente,
pero la implementacion del lexer no usa expresiones regulares. Los tokens que estan relacionados a
los bloques de indentacién indentados son casos especiales, cuyo funcionamiento se describe con mas
detalle en la seccién sobre analisis 1éxico (véase Seccidon 3.1.).

Las expresiones regulares estan escritas con el estilo de Perl. [14]

Nombre Descripcion Expresion regular
Ampersand Signo et: & &
Arrow Flecha simple: -> ->
As Palabra clave: as as
Assign Simbolo de asignacion: := P=
Bang Simbolo de exclamacién: ! !
Case Palabra clave: case case
Char Caracter Unicode N AN
Colon Dos puntos: :
Comma Coma: ,)
Dedent El final de un bloque indentado.
Do Palabra clave: do do
Dot Punto: . \.
DotDot Punto tras punto: .. \TAY
Else Palabra clave: else else

24

El lenguaje de programacion Komodo

Equals Simbolo de igualdad: = =
False Palabra clave: false false
FatArrow Flecha gruesa: => =>
For Palabra clave: for for
From Palabra clave: from from
Greater Simbolo de mayor que: > >
GreaterEqual Simbolo de mayor o igual que: >= >=
Ident Un identificador. \p{Alphabetic}
[\p{Alphabetic}\p{GC=Number}]
If Palabra clave: if if
Import Palabra clave: import import
In Palabra clave: in in
Indent El inicio de un bloque indentado.
Integer Un entero en base 2, 8, 10 o 16. (0)](0(b|B)[0-11+)|(0(0]0)[0-7]1+) |
([1-9110-91*) | (0(x|X)[0-9a-fA-F]+)
Lbrace Corchete izquierdo: { {
Lbrack Paréntesis cuadrado izquierdo: [\ [
LeftShift Dos menor que juntos: << <<
Less Simbolo de menor que: < <
LessEqual Simbolo de menor o igual que: <= <=
Let Palabra clave: let let
LogicAnd Dos signos et juntos: && &&
LogicOr Dos barras verticales juntas: | | A\
Lparen Paréntesis izquierdo: (\ (
Memoize Palabra clave: memoize memoize
Minus Guion: - -
Newline Salto de linea.
NotEqual Un slash y un simbolo de igualdad: /= \/=
Percent Simbolo de porcentaje: % %

Plus Simbolo de suma: + \+
Rbrace Corchete derecho: } }
Rbrack Paréntesis cuadrado derecho:]]

RightShift Dos mayor que juntos: >> >>
Rparen Paréntesis derecho:))
Slash Una barra inclinada: / \/

SlashSlash Dos barras inclinadas: // \/\/

Star Un asterisco: * *
StarStar Dos asteriscos: ** \F*
String Una cadena de caracteres. "[.\s]*"

Then Palabra clave: then then

Tilde Una virgulilla: ~ ~

25

El lenguaje de programacion Komodo

True Palabra clave: true true
Unknown Un caracter no reconocido.
Var Palabra clave: var var
VerticalBar Barra vertical: | \|
Wildcard Barra baja: _

Tabla 1: Tokens del lexer de Komodo y sus reglas.
Hay algunas particularidades a mencionar:

1. El lexer ignora los segmentos que comienzan con un nimeral # y terminan con un salto de linea.
Estos son los comentarios de Komodo.

2. Los identificadores reciben toda la clase Alphabetic de Unicode en su primer caracter, y luego
reciben caracteres de la clase Alphabetic o Number. [15]

Estos nombres son propiedades de caracteres Unicode. [16]

3. Como muestra su expresion regular, los identificadores no incluyen barras bajas en ningtin punto.
Estan exlusivamente compuestos de caracteres alfanumeéricos.

4. Los ceros a la izquierda en enteros decimales no estan permitidos. Un cero sélo va al principio de
un token Integer cuando consiste en un solo cero, o cuando se va a escribir un prefijo para una
base numérica no decimal (@b, 0o o 0x).

6.2. Reglas sintacticas

A continuacion, se muestran las reglas sintacticas de Komodo. Se usan nombres en inglés para reutilizar
los nombres usados en la lista de tokens, que se van a referenciar en esta gramatica. Esto significa que
si hay una regla no terminal mencionada en la gramatica pero no esta definida en la misma, entonces
su nombre esta en la lista de tokens y sus reglas son las mismas que las del token con el mismo nombre.

Los simbolos terminales se muestran entre comillas (como «+», por ejemplo) y los no terminales entre
corchetes angulares (como <Dict>, por ejemplo).

La gramatica ignora detalles como los espacios en blanco, cuyo procesamiento es responsabilidad del
analizador léxico.

Esta gramatica no incluye informacion sobre precedencias de operadores, pero esto esta en la tabla de
precedencias (véase Seccidn 6.2.1.).

La gramatica mostrada es una referencia para describir la sintaxis de Komodo, pero el analizador
sintactico del intérprete no fue construido con una gramatica en mente.

Nota:)\ denota la cadena vacia.

A

<Expression> <Program>
<Bool>

<Char>

<Ident>

<Program> =
\
\
\
| <String>
|
\
\
\
\
\

<Expression>

<Integer>
<List>
<Tuple>
<Set>
<Dict>
<Call>

26

El lenguaje de programacion Komodo

<Bool>

<List>

<Pattern>

<ListPattern>
<SequencePattern>
<TuplePattern>
<SetPattern>

<DictPattern>

<DictSequencePattern>

<InfixPattern>
<Signature>
<Sequence>
<Tuple>
<TupleSequence>
<Set>

<Dict>
<DictSequence>

<Call>
<Lambda>
<Block>

<BlockSequence>

<Lambda>

<Prefix>

<Infix>

<Declaration>

<Import>

<Case>

<If>

<For>

<Parenthesized>

«true»

«false»

«[« <Expression> «for» <Pattern> «in»
«[« <Expression> «|» <Expression> «]»
«[« <Sequence> «]»

«_»

<Bool>

<Char>

<Ident>

<String>

<Integer>

<ListPattern>

<TuplePattern>

<SetPattern>

<DictPattern>

<InfixPattern>

«[« <Pattern> «|» <Pattern> «]»
«[« <SequencePattern> «]»

A

<Pattern>

<Pattern> «,» <SequencePattern>
«(« <SequencePattern> «)»

«{« <Pattern> «|» <Pattern> «}»
«{« <SequencePattern> «}»

«{« <DictSequencePattern> «}»

<Expression> «]»

<Pattern> «=>» <Pattern>

<Pattern> «=>» <Pattern> «,»

<Pattern> «=>» <Pattern> «,» <DictSequencePattern>
<Pattern> «||» <Pattern>

<Pattern> «:» <Signature>

<Ident>

<Ident> «||» <Signature>

A

<Expression>

<Expression> «,» <Sequence>

«(« <TupleSequence> «)»

A

<Expression> «,» <Sequence>

«{« <Expression> «for» <Pattern> «in»
«{« <Expression> «|» <Expression> «}»
«{« <Sequence> «}»

«{« <DictSequence> «}»

<Expression> «=>» <Expression>
<Expression> «=>» <Expression> «,»
<Expression>
<Expression>
<Tuple> «->»
<Ident> «->»
<Expression>
<Indent> <BlockSequence> <Dedent>
<Block>

<Block> <BlockSequence>

<Tuple>
<Block>
<Block>

27

<Expression>

«}»

«=>» <Expression> «,» <DictSequence>

El lenguaje de programacion Komodo

<Expression>
<Expression> <Newline>
<Expression> <Newline> <BlockSequence>

<Prefix> <PrefixOperator> <Expression>
<PrefixOperator> = «~»

| «!»
| «-»

<Infix> == <Expression> <InfixOperator> <Expression>

<InfixOperator> = «inx»
| «..»
| «]||»
| «&8&»
| «>»
| «>=»
| «<»
| «<=»
| «/=»
| «=»
| «"»
| «&»
| «<<»
| «>>»
| «-»
| «+»
| «/»
| «%»
| «*»
| «*%»
| «:i=»
<Declaration> := «let» <Pattern> «:=» <Block>

| «let» <CallPattern> «:=» <Block>
| «let» «memoize» <CallPattern> «:=» <Block>
| «let» <Pattern> «:» <Ident>
| «var» <Pattern> «:= <Block>»

<Import> z= «import» <ImportSource>
| «import» <ImportSource> «as» <Ident>
| «from» <ImportSource> «import» <ImportTarget>
| «from» <ImportSource> «import» <ImportTargetTuple>

<ImportTarget> := <Ident>
| <String>
<ImportTargetTuple> == «(« <ImportTargetSequence> «)»
<ImportTargetSequence> <ImportTarget>

<ImportTarget> «,» <ImportTargetSequence>

<Case> «case» <Expression> «do» <Indent> <CaseBlock> <Dedent>
<CaseBlock> = <Pattern> «=>» <Expression>
| <Pattern> «=>» <Expression> <Newline>
| <Pattern> «=>» <Expression> <Newline> <CaseBlock>
<If> = «if» <Expression> «then» <Block> «else» <Block>
<For> = «for» <Pattern> «in» <Expression> «do» <Block>
<Parenthesized> = «(« <Expression> «)»

6.2.1. Tabla de precedencias
Esta lista tiene todos los operadores infijos de Komodo, con su respectiva precedencia. Un operador
con cierta precedencia va a ser agrupado antes que otro operador con menor precedencia.

Operador | Precedencia

1= 1

in 2

28

El lenguaje de programacion Komodo

3

|| 4
&& 5
> 6
>= 6
< 6
<= 6
/= 6
= 6
a 7
& 8
<< 9
>> 9
- 10

+ 10

/ 11

% 11

* 11

Hk 12

Tabla 2: Tabla de precedencias de Komodo.

Referencias
[1] J. Borwein y D. Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st
Century. en Ak Peters Series. Taylor & Francis, 2004.

[2] B.C. Pierce, Types and Programming Languages, 1st ed. The MIT Press, 2002.

[3] «262: Ecmascript Language Specification - 6th Edition», ECMA (European Association for Stan-
dardizing Information and Communication Systems), pub-ECMA: adr, 2015.

[4] T Norvell, «Parsing Expressions by Recursive Descent». [En linea]. Disponible en: https://www.
engr.mun.ca/~theo/Misc/exp_parsing.htm

[5] «ISO/IEC/IEEE International Standard - Systems and software engineering — Vocabulary», ISO/
IEC/IEEE 24765:2010(E), n.° , pp. 1-418, 2010, doi: 10.1109/IEEESTD.2010.5733835.

«The GNU MP Bignum Library». [En linea]. Disponible en: https://gmplib.org/
«The GNU MPEFR Library». [En linea]. Disponible en: https://www.mpfr.org/

(6]
(7]
[8] «Rust Programming Language». [En linea]. Disponible en: https://www.rust-lang.org/
[9] «Ocaml Programming Language». [En linea]. Disponible en: https://ocaml.org/

|

10] N.I. Adams et al, «Revised5 report on the algorithmic language scheme», SIGPLAN Not., vol. 33,
n.° 9, pp. 26-76, sep. 1998, doi: 10.1145/290229.290234.

[11] J. Yasskin, Ed., «<PEP 3141 - A Type Hierarchy for Numbers». [En linea]. Disponible en: https://
peps.python.org/pep-3141/

29

https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://doi.org/10.1109/IEEESTD.2010.5733835
https://gmplib.org/
https://www.mpfr.org/
https://www.rust-lang.org/
https://ocaml.org/
https://doi.org/10.1145/290229.290234
https://peps.python.org/pep-3141/
https://peps.python.org/pep-3141/

El lenguaje de programacion Komodo

[12] A. Rossberg, Ed., «<WebAssembly Specification». [En linea]. Disponible en: https://webassembly.
github.io/spec/core/

[13] «Language Grammars - TextMate 1.x Manual». [En linea]. Disponible en: https://macromates.
com/manual/en/language_grammars

[14] «perlre - Perl regular expressions». [En linea]. Disponible en: https://perldoc.perl.org/perlre

[15] K. Whistler, Ed., «Unicode Character Database». [En linea]. Disponible en: https://www.unicode.
org/reports/tr44/

[16] A. F. Ken Whistler, Ed., «The Unicode Character Property Model». [En linea]. Disponible en:
https://www.unicode.org/reports/tr23/

30

https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/
https://macromates.com/manual/en/language_grammars
https://macromates.com/manual/en/language_grammars
https://perldoc.perl.org/perlre
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr23/

	1. Introducción
	2. Visión general
	2.1. Sistema de tipos
	2.2. Paradigmas
	2.3. La estructura del intérprete

	3. Análisis léxico y sintáctico
	3.1. Analizador léxico o lexer
	3.1.1. Rastreo de indentación y el alcance del analizador léxico

	3.2. Analizador sintáctico o parser
	3.3. Post-analizador sintáctico o weeder

	4. Ejecución de programas
	4.1. El modelo de ejecución
	4.1.1. Entornos
	4.1.2. Evaluador

	4.2. Variables
	4.2.1. Resolución de nombres
	4.2.2. Copiado de valores
	4.2.3. Variables y tipos
	4.2.4. Ocultamiento o shadowing
	4.2.5. Mutabilidad restringida

	4.3. Importación de código
	4.3.1. Comportamiento de las sentencias import

	4.4. Búsqueda de patrones o Pattern matching
	4.4.1. Descripción de procedimientos
	- Patrones en funciones
	- Expresiones case

	4.4.2. Desestructuración

	4.5. Tipos
	4.5.1. Latente
	4.5.2. Gradual
	4.5.3. Dinámico
	4.5.4. Los tipos incorporados
	- La tupla vacía
	- Números
	- Enteros
	- Números de punto flotante
	- Fracciones

	- Funciones
	- Caracteres y cadenas
	- Caracteres
	- Cadenas

	- Contenedores
	- Tuplas
	- Listas
	- Conjuntos
	- Diccionarios

	4.6. El intérprete
	4.7. Gestión de memoria
	4.8. Conversiones implícitas de valores
	4.8.1. Números
	4.8.2. Caracteres y cadenas

	5. Aspectos periféricos
	5.1. Software adicional
	5.1.1. Editor web
	5.1.2. Resaltado de sintaxis
	5.1.3. Instaladores

	5.2. Guía de uso

	6. Gramática de Komodo
	6.1. Lista de tokens
	6.2. Reglas sintácticas
	6.2.1. Tabla de precedencias

	Referencias

