
El lenguaje de programación Komodo

César Danilo Pedraza Montoya

cpedraza@unal.edu.co

Universidad Nacional de Colombia

Facultad de Ciencias

Departamento de matemáticas

Bogotá, Colombia

2025

mailto:cpedraza@unal.edu.co

Índice
1. Introducción . ⁠1

2. Visión general . ⁠1

2.1. Sistema de tipos . ⁠1

2.2. Paradigmas . ⁠1

2.3. La estructura del intérprete . ⁠2

3. Análisis léxico y sintáctico . ⁠3

3.1. Analizador léxico o lexer . ⁠3

3.1.1. Rastreo de indentación y el alcance del analizador léxico . ⁠3

3.2. Analizador sintáctico o parser . ⁠5

3.3. Post-analizador sintáctico o weeder . ⁠5

4. Ejecución de programas . ⁠6

4.1. El modelo de ejecución . ⁠6

4.1.1. Entornos . ⁠7

4.1.2. Evaluador . ⁠7

4.2. Variables . ⁠7

4.2.1. Resolución de nombres . ⁠7

4.2.2. Copiado de valores . ⁠8

4.2.3. Variables y tipos . ⁠8

4.2.4. Ocultamiento o shadowing . ⁠9

4.2.5. Mutabilidad restringida . ⁠9

4.3. Importación de código . ⁠9

4.3.1. Comportamiento de las sentencias import . ⁠10

4.4. Búsqueda de patrones o Pattern matching . ⁠10

4.4.1. Descripción de procedimientos . ⁠11

- Patrones en funciones . ⁠11

- Expresiones case . ⁠11

4.4.2. Desestructuración . ⁠11

4.5. Tipos . ⁠12

4.5.1. Latente . ⁠12

4.5.2. Gradual . ⁠12

4.5.3. Dinámico . ⁠12

4.5.4. Los tipos incorporados . ⁠12

- La tupla vacía . ⁠12

- Números . ⁠13

- Enteros . ⁠13

- Números de punto flotante . ⁠13

- Fracciones . ⁠14

- Funciones . ⁠14

- Caracteres y cadenas . ⁠15

- Caracteres . ⁠15

- Cadenas . ⁠16

- Contenedores . ⁠16

- Tuplas . ⁠16

- Listas . ⁠17

- Conjuntos . ⁠18

- Diccionarios . ⁠19

4.6. El intérprete . ⁠20

4.7. Gestión de memoria . ⁠20

4.8. Conversiones implícitas de valores . ⁠21

4.8.1. Números . ⁠21

4.8.2. Caracteres y cadenas . ⁠22

5. Aspectos periféricos . ⁠22

5.1. Software adicional . ⁠22

5.1.1. Editor web . ⁠22

5.1.2. Resaltado de sintaxis . ⁠24

5.1.3. Instaladores . ⁠24

5.2. Guía de uso . ⁠24

6. Gramática de Komodo . ⁠24

6.1. Lista de tokens . ⁠24

6.2. Reglas sintácticas . ⁠26

6.2.1. Tabla de precedencias . ⁠28

Referencias . ⁠29

El lenguaje de programación Komodo

1. Introducción
Komodo es un lenguaje de programación hecho para probar ideas rápidamente. Es ideal para problemas

con estructuras discretas como números y palabras. Komodo intenta que operar con estas entidades

sea tan fácil como sea posible mientras se minimiza la cantidad de código necesario para llegar a una

implementación exitosa. La otra prioridad de Komodo es la sencillez: se busca que el lenguaje sea

pequeño y con reglas simples, con el propósito de que pueda ser aprendido con facilidad.

Komodo está diseñado con la intención de convertirse en una herramienta útil para generar estructuras

discretas que puedan depender de muchas restricciones, para así estudiarlas. Esta es una tarea común

en el estudio de areas de las matemáticas como la combinatoria, la teoría de la computación, la teoría

de grafos o la teoría de códigos. Usar el computador como una herramienta de exploración matemática

es una práctica conocida como matemática experimental. [1, p. 2]

Este documento describe el lenguaje de programación Komodo. No es una guía de uso del lenguaje.

También se exploran detalles del intérprete de Komodo creado por el autor. Sin embargo, no se describe

todo el comportamiento esperado de una implementación del lenguaje, ni se proveen detalles del

intérprete más allá de lo estructural.

2. Visión general
El propósito de Komodo tiene consecuencias en su diseño. Puesto que Komodo es un lenguaje para

scripting, no es una prioridad que el lenguaje se procese a si mismo, o que la representación de los

datos sea similar a la representación de los programas. Asimismo, el nivel de abstracción de Komodo

y la etapa en que se encuentra el proyecto hacen preferible implementar un intérprete en lugar de un

compilador.

El diseño de Komodo no es deliberado, sino que se ha llegado a él con una construcción iterativa.

En esta sección se explican brevemente las características de Komodo, que son descritas con mayor

detalle en secciones posteriores.

2.1. Sistema de tipos
Komodo es un lenguaje con tipado débil y dinámico. Lo primero significa que las reglas de tipos son

relativamente laxas y se realizan conversiones implicitas de tipos, y lo segundo significa que estas

reglas y conversiones son verificadas y realizadas en tiempo de ejecución. Esto es así por varias razones:

• Komodo está pensado para que las anotaciones de tipos sean totalmente opcionales, por lo que en

general no es posible inferir los tipos de todas las variables en tiempo de compilación.

• Hace posible la implementación de un intérprete sin añadir análisis semántico, lo que fue útil para

llegar rápido a un prototipo funcional.

• Komodo está pensado para realizar algunas conversiones de tipos implicitamente, lo que necesaria

mente implica que las restricciones de tipos son más ligeras.

Komodo también es de tipado latente, lo que significa que los tipos están asociados a valores y no

a variables o símbolos. Esto hace que un símbolo pueda tener valores tipos distintos en momentos

distintos. [2, p. 2].

Además, Komodo tiene tipado gradual. Se realiza chequeo de tipos en tiempo de ejecución cuando el

usuario provee restricciones de tipos en las firmas de funciones y variables.

2.2. Paradigmas
Komodo emplea dos paradigmas de programación: procedural y funcional.

1

El lenguaje de programación Komodo

Por un lado, Komodo es un lenguaje procedural porque las formas y el orden importan: las sentencias

de un programa son evaluadas en el orden en que aparecen en el mismo. Esto establece una semántica

clara para cambiar el valor de una variable sin que esta sea mutable, por ejemplo. (veáse Sección 4.2.4.)

Además, en Komodo las funciones tienen un papel protagónico: pueden declararse de forma nombrada

o anónima, pueden rastrear patrones y pueden pasarse como argumentos a otras funciones. La

búsqueda de patrones de Komodo y su inclusión en las funciones permite describir procedimientos en

términos de lo que deben hacer, en lugar de como.

Esto permite que dependiendo del problema, un programa de Komodo pueda ser más imperativo o

más declarativo a conveniencia. La forma en que se restringe la combinación de los dos paradigmas es

limitando la mutabilidad de valores.

2.3. La estructura del intérprete
Como suele suceder con múltiples compiladores e intérpretes, el intérprete de Komodo funciona

como una cadena de procesamiento. Se comienza procesando texto, y tras cada paso se obtiene una

representación del programa más preparada para ser ejecutada. En el caso de Komodo, se tienen las

siguientes etapas:

1. Analizador léxico,

2. Analizador sintáctico,

3. Post-analizador sintáctico o weeder,

4. Evaluador,

5. Entorno de tiempo de ejecución o runtime environment.

Este es un diagrama de secuencia de los componentes del intérprete. Las columnas son los compo

nentes, y las flechas son interfaces. En algunos casos las interfaces son estructuras de datos, y en otros

son eventos invocados por el usuario.

Sistema operativo Lexer Parser Weeder Evaluador Runtime

Sistema operativo Lexer Parser Weeder Evaluador Runtime

REPL

Archivos con código

Token

CST

AST

Declaraciones

Valores

Entrada/salida estándar

Figura 1: Componentes del intérprete y sus relaciones más importantes.

En este documento se hace una descripción del funcionamiento de cada componente y cada relación

entre componentes, al mismo tiempo que se especifican aspectos de Komodo.

2

El lenguaje de programación Komodo

3. Análisis léxico y sintáctico

3.1. Analizador léxico o lexer

El analizador léxico convierte un programa, una sucesión de caracteres, en una sucesión de tokens,

que son unidades más complicadas como palabras, números y símbolos. Uno de los propósitos de esta

fase es que las demás fases no tengan que lidiar con detalles relacionados al texto que representa el

programa: Las fases posteriores no deberían lidiar con aspectos como espacios en blanco, indentación

o comentarios en el código. Toda la información necesaria debería estar incluída en los tokens que el

analizador emite.

La entrada del analizador es un stream de caracteres Unicode. Sin embargo, la mayoría de palabras

clave y símbolos se componen de caracteres ASCII. La salida es un stream de tokens. El lexer pasa una

sola vez por el texto de entrada para emitir todos los tokens correspondientes, y el texto es recorrido

conforme los tokens son emitidos.

let x := 2

↓

Let, Ident(x), Assign, Integer(2)

Listado 1: Ejemplo de paso de un texto a una sucesión de tokens

3.1.1. Rastreo de indentación y el alcance del analizador léxico

Los tokens Indent y Dedent indican el inicio y el final de un bloque de código indentado, respectiva

mente. Por ejemplo, en el siguiente fragmento de código

let f(x) := x + 2

Listado 2: Ejemplo de declaración de una función

el cuerpo de la función f está compuesto exactamente por la expresión x + 2. Si se requiere que el

cuerpo de la función tenga más líneas de código, se puede iniciar un bloque en una nueva línea. Las

líneas que pertenecen al bloque están espaciadas a la derecha por 4 espacios:

let f(x) :=

 let y := 2

 x + y

Listado 3: Ejemplo de declaración de una función con un bloque de código.

En este caso, la función f esta compuesta por un bloque de código de dos líneas.

Para indicar el inicio de este bloque, el lexer emite un token Indent antes de emitir los correspondientes

al mismo. Tras haber emitido todos los tokens del bloque, se emite un Dedent para indicar el fin de este.

Este comportamiento también ocurre cuando hay bloques dentro de bloques, como en el siguiente

programa:

for i in 0..10 do

 # se emite el primer Indent

 for j in 0..10 do

 # se emite el segundo Indent

 mat[i][j] = i + j

Se emiten dos Dedent seguidos

Listado 4: Ejemplo de bloques anidados.

3

El lenguaje de programación Komodo

En este caso, el cuerpo del primer ciclo for es un un bloque de código, cuya única parte es otro ciclo

for, cuyo cuerpo es otro bloque de una sola línea. Después del primer do se emite un Indent. Después

del segundo do se emite otro Indent. Cuando se llega al final del texto, se emiten dos Dedent seguidos

para «cerrar» los dos bloques de código que estaban «abiertos».

La razón para hacer esto es que al emitir estos tokens se pueden entender los bloques de código de

la misma forma que se hace con lenguajes donde los bloques están delimitados con caracteres como

corchetes. Por ejemplo en JavaScript [3], este es un programa similar:

for (let i = 0; i < 10; i++) {

 for (let j = 0; j < 10; j++) {

 mat[i][j] = i + j;

 }

}

Listado 5: Bloques anidados en JavaScript.

Los corchetes aquí cumplen la misma función que los Indent y Dedent en Komodo, solo que en este

caso tienen una correspondencia directa con caracteres del texto. En el caso de Komodo son un artificio

obtenido de contar espacios en blanco.

Esta es una descripción de como el lexer decide emitir estos tokens:

1. El lexer cuenta el nivel de indentación en el que se encuentra el programa en el punto en donde el

texto está siendo leído. Cuando se está al principio del programa, este nivel es cero.

2. Cuando se llega a una nueva línea, se quiere contar su nivel de indentación. Esto se hace contando el

número de espacios al principio de la línea. Cada 4 espacios son un nivel de indentación. Si quedan

espacios sobrantes (es decir, el número de espacios no es múltiplo de 4), se ignora el residuo.

Por ejemplo, la línea de código

 println(x)

tiene 8 espacios al principio, por lo que su nivel de indentación es 2.

Las líneas que estan compuestas exclusivamente de espacios o comentarios son ignoradas.

3. Una vez que se consumen y cuentan los espacios, y que se llega a un caracter que va a componer un

token, se compara el nivel de indentación de la línea con el nivel de indentación que el lexer guarda.

• Si son iguales, no se emiten tokens de más: el resto de la línea es consumida.

• Si el nivel de la línea es mayor, se emiten tantos Indent como la diferencia entre el nivel de la

línea y el nivel guardado en el lexer, y se consume el resto de la línea.

• Si el nivel de la línea es menor, se emiten tantos Dedent como la diferencia entre el nivel guardado

en el lexer y el nivel de la línea. Luego se consume el resto de la línea.

Cabe destacar que la razón por la que hay que almacenar el nivel de indentación es por que las

reglas con las que estos tokens son emitidos son dependientes del contexto: no basta con conocer el

caracter actual o una cantidad fija hacia adelante, sino, en general, es necesario poder recorrer todos

los caracteres recorridos antes. Una solución más sensible es almacenar un estado útil (el nivel de

indentación) para poder decidir cuando emitir los tokens.

Esta estrategia es la misma que usa el intérprete principal de Python, CPython.

4

El lenguaje de programación Komodo

3.2. Analizador sintáctico o parser

El analizador sintáctico convierte sucesiones de tokens en nodos de un árbol que describe la estructura

sintáctica del programa, conocido como CST (del inglés Concrete Syntax Tree). Este árbol contiene todos

los detalles del programa, y es generado casi en su totalidad de forma independiente del contexto. La

mayoría de la estructura del programa se obtiene de este paso.

El parser recibe un stream de tokens, y retorna un stream de nodos del CST. En este punto, un programa

es una sucesión de nodos del CST.

Komodo es un lenguaje orientado a expresiones, lo que significa que hay una preferencia explicita a

que las sentencias del lenguaje retornen un valor.

Komodo tiene algunas sentencias cuya interpretación más natural son como declaraciones, pero aún

así retornan un valor, que usualmente es la tupla vacía ().

Esto hace que en el análisis sintáctico todo sea considerado una expresión. No se define una distinción

entre declaraciones y expresiones.

El análizador sintáctico de Komodo es de descenso recursivo. Esto significa que está compuesto de

funciones que se llaman mutuamente, donde (casi siempre) una función se encarga de procesar exclu

sivamente una de las expresiones del lenguaje.

De forma similar a como ocurre con el analizador léxico, el analizador sintáctico solo pasa por el stream

de tokens una vez para analizar todo el programa. No es necesario hacer regresos a partes del stream

previamente recorridas.

let x := 2

↓

Let, Ident(x), Assign, Integer(2)

↓

Let

Infix(Assign)

Symbol(x) Integer(2)

Listado 6: Ejemplo de paso de una sucesión de tokens a un nodo de CST

Para el análisis de expresiones infijas, el parser usa el algoritmo de escalada de precedencia (precedence

climbing en Inglés). Este es un algoritmo iterativo que funciona bien dentro de un analizador de

descenso recursivo, siendo más simple que algunas de las alternativas, como el algoritmo Shunting

Yard. [4]

3.3. Post-analizador sintáctico o weeder

El weeder toma un nodo del CST y realiza dos tareas:

• Eliminar detalles innecesarios para la evaluación del código,

• Verificar condiciones del programa que serían más dificiles de verificar en etapas anteriores.

El resultado es un nodo de un árbol de sintaxis abstracto o AST (del inglés Abstract Syntax Tree), que

no contiene detalles como la precedencia de operadores, espacios o indentación. También convierte

ciertos operadores infijos en nodos más restringidos, para facilitar la evaluación y eliminar estados

5

El lenguaje de programación Komodo

indeseables. El tipo de errores que el weeder captura son de naturaleza sintáctica y en muchas ocasiones,

dependientes del contexto.

A diferencia del lexer y del parser, cuyas entradas son streams, la entrada del weeder es un nodo

individual del CST. Cuando un programa es analizado, el weeder pasa por cada uno de los nodos

retornados por el parser de forma independiente.

La tarea del weeder es reescribir los nodos del CST para convertirlos en nodos del AST. Este proceso

puede fallar cuando el nodo de entrada no cumple características que el weeder verifica. Por lo tanto, el

weeder puede retornar un nodo del AST o un error reportando la restricción que la entrada no cumple.

Otra de las razones para añadir el weeder como una fase independiente en lugar de integrar sus

funciones al parser, es controlar la complejidad del parser, que puede empezar a abarcar muchas reglas

rápidamente. Al costo de aumentar el número de componentes y hacer al intérprete potencialmente

más lento, se conserva la facilidad para entender y modificar el parser. Por esta razón, hay transforma

ciones que se realizan en el weeder a pesar de que podrían realizarse en el parser sin tanta dificultad.

El cambio de nodos del CST a nodos del AST también deja atrás información que ya no es relevante,

como la precedencia de operadores. Esto crea barreras más rigidas entre las fases del intérprete,

evitando que se acoplen [5, p. 83] demasiado.

let x := 2

↓

let, Ident(x), Assign, Integer(2)

↓

Let

Infix(Assign)

Symbol(x) Integer(2)

↓

Declaration(Inmutable)

Symbol(x) Integer(2)

Listado 7: Ejemplo de paso de un nodo de CST a uno de AST

4. Ejecución de programas

4.1. El modelo de ejecución
Un programa de Komodo está hecho de módulos de código. Un modulo de código es creado cada

vez que:

• se ejecuta un archivo con código,

• se inicia una sesión del REPL.

Un archivo con código es ejecutado cuando el usuario lo solicita usando la interfaz de línea de

comandos, o cuando es importado desde otro módulo.

Toda ejecución de un módulo de código tiene su propio entorno.

6

El lenguaje de programación Komodo

foo.komodo

let foo(x) := x * x

bar.komodo

let bar() := 5

↓

from "./foo.komodo" import foo

from "./bar.komodo" import bar

let x := bar()

println(foo(x))

Listado 8: Ejemplo de un programa de Komodo. Hay 3 módulos y 3 entornos.

El que haya una correspondencia exacta entre entornos y módulos de código es conveniente para

razonar fácilmente sobre los módulos: son unidades aisladas que se comunican entre si mediante la

importación de variables.

4.1.1. Entornos

Un entorno está compuesto de una pila de scopes. Un scope es una tabla que hace corresponder nombres

con objetos.

El estado inicial de todo entorno tiene un scope, y siempre va a tener al menos un scope.

Se añade un nuevo scope al entorno cada que:

• Se ejecuta una función,

• Se ejecuta un ciclo,

• Se ejecuta un bloque de código indentado.

Después de ejecutar el código en cada uno de estos casos, el scope es eliminado del entorno.

Cuando se ejecutan archivos con código, los entornos también guardan la ruta del archivo en el sistema

de archivos local, y la ruta de la terminal donde fue ejecutado el intérprete.

4.1.2. Evaluador

Todos los módulos de código son ejecutados por separado. Para ejecutar un módulo de código, se

ejecuta cada uno de los nodos del AST que lo componen, en orden, con el mismo entorno que va siendo

potencialmente modificado tras cada ejecución. El estado inicial del entorno es el descrito previamente.

Esto hace que un entorno sea el único lugar donde se conserva el estado de ejecución de un módulo.

4.2. Variables
Komodo permite la declaración de variables inmutables usando la palabra clave let. También se

permite la creación de variables mutables con la palabra clave var.

var x := 5

let y := a -> a + a * 2

Listado 9: Ejemplos de declaraciones en Komodo.

4.2.1. Resolución de nombres

Cuando un nombre es referenciado en el código, se busca en el entorno de la siguiente forma:

• Si se referencia para ser mutado (por ejemplo, al escribir x := 5), se comienza buscando desde el

scope al tope de la pila hasta el de más abajo. Se retorna la primera coincidencia encontrada. Si la

variable no se encuentra en el scope al tope, se interrumpe la búsqueda cuando se pasa por el scope

generado por la ejecución de una función. Si la variable no es encontrada, también se interrumpe la

ejecución con un error.

7

El lenguaje de programación Komodo

Por ejemplo, en el siguiente ejemplo de código, la variable x es encontrada y modificada:

var res := 0

for i in 0..3 do

 res := res + i

assert(res = 3)

Listado 10: Ejemplo de uso ordinario de una variable mutable.

Sin embargo, en este ejemplo el intérprete retorna un error:

var res := 0

let f() :=

 for i in 0..3 do

 res := res + i

f()

assert(res = 3)

Listado 11: Ejemplo de uso no permitido de una variable mutable.

En la implementación actual, el intérprete de Komodo comunica que la variable existe, pero que no

puede ser mutada.

• Si se referencia una variable para obtener su valor (por ejemplo, al escribir cur + 10), se comienza

buscando desde el scope al tope de la pila hasta el de más abajo. Se retorna la primera coincidencia

encontrada. Si la variable no es encontrada, se interrumpe la ejecución del programa con un error.

4.2.2. Copiado de valores

Komodo no tiene una noción de referencia. En el contexto de la dicotomía valor-referencia, en Komodo

solo se manipulan valores. Esto hace que los detalles internos sobre referencias a valores y el copiado

de valores sean invisibles al usuario.

El intérprete usa referencias siempre que es posible. Cuando una variable inmutable es asignada como

el valor de otra variable inmutable, lo que se obtiene es una referencia a la variable original.

Sin embargo, siempre que esta variable haga parte de un cálculo o un procedimiento, se va a hacer una

copia.

Cuando el valor de una variable es asignado a otra variable mutable, siempre se hace una copia.

Salvo por los tipos Char y Bool, la inicialización de todos los tipos de Komodo requieren la solicitud

de memoria en tiempo de ejecución. Por esta razón, se prefiere la creación de referencias en lugar de

crear copias.

4.2.3. Variables y tipos

En Komodo, los tipos están asociados a valores, y no a variables. Esto permite que una variable pueda

ser declarada con un valor con cierto tipo, y luego se le pueda asignar otro valor, con otro tipo. Esto

es conocido como tipado latente.

var x := 2

x := "2"

Listado 12: Ejemplo de una variable mutada con distintos tipos.

8

El lenguaje de programación Komodo

4.2.4. Ocultamiento o shadowing

Una variable puede ser declarada varias veces con el mismo nombre, incluso en el mismo scope. Esto se

conoce como shadowing. Es una característica conveniente dada la tendencia del intérprete a funcionar

con referencias, y es un medio para reciclar nombres en rutinas donde esto es útil.

Cabe destacar que el ocultar una variable con un nuevo valor no afecta los usos previos al ocultamiento.

Un ejemplo de esto se muestra en el siguiente programa:

let f() := 1

let g() := f()

let f() := 2

let h() := f()

let f() := 3

assert(g() = 1)

assert(h() = 2)

Listado 13: Ejemplo de shadowing.

Aquí, la función g retorna 1, que es el valor de la función f cuando g fue definida. Lo mismo sucede

con la función h, que retorna 2. El hecho de que luego f retorne 3 no afecta a ningún uso previo.

4.2.5. Mutabilidad restringida

La mutabilidad de variables está restringida por dos reglas:

• Las únicas variables mutables son las que han sido inicializadas usando var. Por ejemplo, la asigna

ción dentro de esta función no está permitida, pues hay una asignación a uno de los argumentos:

let f(x) :=

 println(x)

 x := x - 1

Listado 14: Ejemplo de asignación ilegal a un argumento (siempre son inmutables).

• Dentro de una función, no se puede modificar el valor de una variable definida fuera de la función.

Este es un ejemplo mínimo:

var x := 0

let f() :=

 x := 1

Listado 15: Ejemplo de asignación ilegal a una variable.

El propósito de estas reglas es restringir los casos de uso de un estado mutable.

4.3. Importación de código
Komodo tiene sintaxis para importar módulos de código externos, ya sea de la librería estándar o de

archivos con código del sistema de archivos local.

Por ejemplo, para importar funciones del módulo utils de la librería estándar, basta escribir

from utils import (map, reduce)

(0..5)

 .map(a -> a*a)

 .reduce((acc, cur) -> acc + cur, 0)

Listado 16: Ejemplo de uso de la librería estándar.

9

El lenguaje de programación Komodo

Por otro lado, para importar código de un archivo local, hay que pasar una cadena con la ruta corres

pondiente, en lugar del nombre del módulo. Este es un ejemplo:

from "/tmp/foo.komodo" import VALUE

println(VALUE)

Listado 17: Ejemplo de importación de código externo.

Komodo permite la importación de cualquier valor, no sólo funciones.

4.3.1. Comportamiento de las sentencias import

Las sentencias from <module> import <values> pueden ponerse en cualquier parte de un programa.

Siempre retornan la tupla vacía ().

Este es el procedimiento que realizan:

• Se obtiene un entorno derivado del módulo solicitado.

‣ Si el módulo solicitado corresponde a código de Komodo, todo este código es ejecutado, obteniendo

un entorno.

‣ Si el módulo solicitado no corresponde a código de Komodo, entonces debe ser un módulo de la

librería estándar para el que se creó un entorno correspondiente previamente, que es retornado.

• Ya con el entorno, los nombres solicitados son obtenidos del mismo e introducidos en el scope al

tope del entorno del módulo que se está ejecutando actualmente (en el que fue escrita la sentencia).

Nótese que una sentencia import puede ponerse en cualquier punto de un programa, por lo que puede

afectar un scope específico. En el siguiente ejemplo, se realiza una importación y solo se añaden los

nombres importados al scope donde se realizó la importación:

let f(x) :=

 from math import sqrt

 x + sqrt(x)

sqrt(5) # error!

Listado 18: Importación en un scope específico.

En este caso se importó la función sqrt dentro del scope de la función f, por lo que no afecta a los

scopes anteriores, y la función no será encontrada en estos.

Otra característica a destacar de la importación de módulos es que al importar elementos de un archivo

con código, todo el archivo es ejecutado; independientemente de cuantos nombres se soliciten.

4.4. Búsqueda de patrones o Pattern matching

La búsqueda de patrones es una forma de verificar propiedades en valores de Komodo. Por ejemplo, el

siguiente programa busca patrones en una lista:

let len(list: List) :=

 case list do

 [] => 0

 [_|tail] => 1 + len(tail)

Listado 19: Ejemplo de búsqueda de patrones en Komodo.

En este ejemplo hay una lista de parejas, que hacen corresponder patrones y resultados.

El primer patrón expresa que si la lista referenciada por list esta vacía, su longitud es 0.

10

El lenguaje de programación Komodo

El segundo dice que si la lista está compuesta de un elemento al principio y otra lista con los demás,

referenciada con tail, su longitud es de 1 más la longitud de tail.

La búsqueda de patrones permite describir procedimientos como listas de reglas. También permite usar

la estructura de un valor para obtener otros valores de su interior. Vamos a describir estos casos de uso.

4.4.1. Descripción de procedimientos

Como se mostró en el ejemplo anterior, se pueden describir procedimientos con patrones. Komodo

tiene dos mecanismos para hacer esto.

- Patrones en funciones

Las funciones en Komodo pueden definirse en varias declaraciones separadas, donde se pueden poner

patrones diferentes. Por ejemplo, esta es una forma de definir la función de Fibonacci:

let fib(0) := 0

let fib(1) := 1

let fib(n) := fib(n - 1) + fib(n - 2)

Listado 20: Función de Fibonacci en Komodo.

Los parámetros de la función pueden escribirse como patrones, que cuando la función sea llamada,

serán comparados con los argumentos en orden. El resultado asociado a la primera lista de patrones que

sea compatible con los argumentos será el resultado de la llamada. Sin ningún patrón es compatible,

el programa se detiene con un error.

- Expresiones case

No es necesario usar funciones para escribir procedimientos con patrones. Se puede usar una expresión

case:

case x % 2 do

 0 => "x es par"

 1 => "x es impar"

Listado 21: Ejemplo de uso de una expresión case.

El comportamiento es el mismo: los patrones son comparados con la expresión en orden, y el primer

patrón compatible determina el resultado. Si ningún patrón es compatible, el programa se detiene con

un error.

4.4.2. Desestructuración

Se pueden usar patrones en definiciones para extraer valores del interior de otros valores:

let coordinates(n) := (n + 1, n * 2)

let (x, y) := coordinates(0)

assert(x = 1)

assert(y = 0)

Listado 22: Ejemplo de desestructuración en Komodo.

En este ejemplo, se compara el patrón a la izquierda de la asignación con el valor de coordinates(0).

En este caso el patrón es compatible: el valor es (1, 0). Así, se asigna a x el valor 1 y a y el valor 0.

Cuando el patrón no es compatible, el programa se detiene con un error.

También se pueden desestructurar valores en ciclos for:

11

El lenguaje de programación Komodo

from utils import map

let coordinates(n) := (n + 1, n * 2)

for (x, y) in (0..5).map(coordinates) do println(x + y)

Listado 23: Ejemplo de desestructuración en un ciclo for.

El comportamiento es el mismo que se da cuando se hace una declaración, solo que se repite al principio

de cada iteración.

4.5. Tipos
Komodo es un lenguaje con tipado latente, gradual y dinámico. Esto hace considerar fácilmente a

Komodo como un lenguaje de tipado débil. Describamos estas características.

4.5.1. Latente

Los tipos de Komodo no están asociados a símbolos, sino a valores. La principal consecuencia de esto

es que un símbolo puede tener valores de distintos tipos en momentos diferentes. Esto es útil para la

reutilización de nombres, por ejemplo.

4.5.2. Gradual

Se pueden añadir chequeos de tipos a un programa de Komodo de manera opcional, y a conveniencia.

Estos chequeos se realizan en tiempo de ejecución. Por ejemplo, en este programa hay un chequeo de

tipos:

let first(list: List) := list[0]

Listado 24: Chequeo de tipos en Komodo.

Nótese que hay patrones que realizan chequeos de tipos implicitos:

let some({res|_}: Set) := res

Listado 25: Chequeo de tipos redundante.

En este ejemplo, verificar que la entrada es de tipo Set es redundante, pues el patrón {res|_} solo es

compatible con valores de tipo Set. Bastaría con escribir la función así:

let some({res|_}) := res

Listado 26: Chequeo de tipos implícito.

4.5.3. Dinámico

Todos los chequeos de tipos en programas de Komodo se realizan en tiempo de ejecución. Esto hace

que la implementación de reglas de tipado débil sea más sencilla, con la consecuencia de que deben

realizarse más chequeos en tiempo de ejecución.

4.5.4. Los tipos incorporados

Komodo viene con tipos incorporados que facilitan la creación de procedimientos básicos, y son

herramientas que se esperan en cualquier lenguaje de programación de propósito general. Sin embargo,

la elección de los tipos incorporados de Komodo refleja sus preferencias de uso.

- La tupla vacía

Está representada por (). Es en la práctica el tipo nulo de Komodo.

Es importante recalcar que la tupla vacía no es un tipo separado (como sucede con el tipo unitario en

lenguajes como Haskell o Rust), sino que realmente el intérprete lo considera una tupla sin valores.

12

El lenguaje de programación Komodo

Esta característica hace a () más cercano a un tipo nulo, típico de los lenguajes de programación

imperativos; que a un tipo unitario, típico de los lenguajes de programación funcionales.

La tupla vacía es un patrón que se puede rastrear:

let isNull(()) := true

let isNull(_) := false

Listado 27: Pattern matching con la tupla vacía.

También puede usarse el operador de igualdad:

let isNull(val) := val = ()

Listado 28: Comparación con la tupla vacía.

Este ejemplo muestra como realmente () es representado como una tupla:

let isTuple(_: Tuple) := true

let isTuple(_) := false

assert(().isTuple())

Listado 29: Tipo de la tupla vacía.

- Números

Komodo tiene tres representaciones para números: Enteros, flotantes y fracciones. Todos tienen

tamaño arbitrario, que crece bajo demanda. El intérprete usa las librerías GMP y MPFR, que hacen

parte del proyecto GNU y están diseñadas para funcionar juntas.

- Enteros

Los enteros tienen signo y tienen las operaciones de suma, resta, multiplicación, división, residuo,

exponenciación y desplazamiento de bits, tanto a la izquierda como a la derecha. Los bits más signifi

cativos están a la izquierda. Son representados en tiempo de ejecución como arreglos dinámicos de

enteros de longitud de la palabra de máquina de ejecución. El signo va por separado.

La generación de enteros de Komodo requiere, en general, de solicitar memoria en tiempo de ejecución.

Este es un proceso costoso en términos de tiempo.

Se pueden escribir constantes en base 2, 8, 10 y 16. No hay diferencia entre dos enteros que representan

la misma magnitud, independientemente de la base en que fueron escritos.

let eights := {

 0b1000,

 0o10,

 8,

 0x8,

}

assert(eights = {8})

Listado 30: Enteros de Komodo.

La implementación de los enteros es traída de la librería GMP. [6]

- Números de punto flotante

Los números de punto flotante de Komodo son una extensión de los descritos por el estándar IEEE 754,

con las siguientes diferencias:

13

El lenguaje de programación Komodo

• El tamaño de la mantisa puede ser mayor que 53 bits.

• El tamaño de la mantisa puede variar entre diferentes instancias de los números.

• El tamaño de la mantisa se decide en el momento que un número es instanciado.

Puesto que la representación de estos números es binaria, viene con las características típicas de los

números de punto flotante de máquina. En particular, no todos los números decimales son represen

tables por estos números. Este es un ejemplo común:

let x := 0.1

Listado 31: Números de punto flotante en Komodo.

En este caso, x tiene un redondeo muy cercano a 0.1, pero no es exactamente 0.1, por el hecho de que

0.1 no puede ser representado con un mantisa y un exponente binarios.

La generación de flotantes requiere de la solicitud de memoria en tiempo de ejecución.

La implementación de los números de punto flotante es traída de la librería MPFR [7], que es una

extensión de la librería GMP.

- Fracciones

Las fracciones tienen signo y tienen las operaciones de suma, multiplicación, división y exponencia

ción. Son representados como un par de enteros de longitud arbitraria, por lo que se pueden realizar

operaciones con números arbitrariamente grandes o pequeños.

La utilidad de las fracciones viene cuando es necesario hacer operaciones sin redondeos, con el costo de

menor velocidad. Las fracciones pueden representar todos los números que los enteros y los flotantes

pueden representar, y más.

Se escriben con dos barras inclinadas:

let a := 5

let b := 1 // 5

assert(a * b = 1)

Listado 32: Fracciones de Komodo.

La generación de fracciones también requiere de la solicitud de memoria en tiempo de ejecución.

La implementación de las fracciones es traída de la librería GMP.

- Funciones

Las funciones de Komodo pueden escribirse de dos formas:

• De forma anónima, como una lista de parámetros y un bloque de código:

(a, b) -> a + b - 5

Listado 33: Función anónima de Komodo.

Estas funciones son expresiones, así que pueden ser puestas dentro de contenedores o ser guardadas

como variables.

• con nombre, como una lista de parejas patrón-resultado:

14

El lenguaje de programación Komodo

let f(0, _) := 0

let f(_, 0) := 0

let f(a, b) := a + b - 5

Listado 34: Función nombrada de Komodo.

Las funciones nombradas son siempre inmutables, así que no pueden crearse con la palabra clave

var. Ejecutar esta pieza de código retorna un error:

var f(x) := 2*x

Listado 35: Declaración ilegal de una función.

Todas las funciones de Komodo pueden ser pasadas como argumentos de otras funciones.

Los scopes de Komodo son creados de forma léxica, lo que significa que los nombres referenciados en

la función son los que se obtienen en el contexto de la definición de la función, y no en el contexto de

sus ejecuciones. Usemos como ejemplo el siguiente fragmento de código:

let a := 2

let func := () -> a

for i in 0..5 do

 let a := i

 assert(func() = 2)

Listado 36: Scope léxico en Komodo.

En este caso, a pesar de que la func es ejecutada en un scope donde el valor de a varía, siempre usa

el valor que a tenía cuando fue definida. Esta regla limita la forma en que se puede interpretar una

llamada a una función, lo que puede ser conveniente al analizarla.

- Caracteres y cadenas

Komodo, a diferencia de muchos lenguajes de scripting, tiene tipos separados para representar carac

teres y cadenas. Esto puede ser útil a la hora de iterar sobre cadenas y de hacer tratamiento minucioso

de cadenas. Los dos tipos operan juntos, y se realizan conversiones implícitas entre ellos cuando es

conveniente.

- Caracteres

Los caracteres de Komodo son valores escalares de Unicode, por lo que pueden representar cualquier

símbolo Unicode. Tienen una longitud fija de 32 bits.

Su sintaxis es muy similar a la de las cadenas, sólo que usa comillas simples:

let a := 'a'

Listado 37: Declaración de un caracter en Komodo.

Todos los caracteres son patrones que pueden ser rastreados, y también se puede restringir la entrada

de una función por su tipo:

15

El lenguaje de programación Komodo

let isAnA('a' || 'A') := true

let isAnA(_) := false

let isChar(_: Char) := true

let isChar(_) := false

assert(isAnA('a'))

assert(isChar('b'))

Listado 38: Patttern mathing de caracteres.

Los caracteres pueden ser sumados entre si para sumar cadenas, y pueden ser sumados con cadenas

para producir otras cadenas. También pueden ser multiplicados por un entero para concatenarse a si

mismas varias veces:

assert('a'+'b'="ab") # Char + Char

assert('a'+"bc"="abc") # Char + String

assert('z'*3="zzz") # Char "multiplicado"

Listado 39: Operaciones con caracteres en Komodo.

- Cadenas

Las cadenas de Komodo están representadas como arreglos inmutables de bytes, que están codificados

con UTF-8.

Se puede iterar de izquierda a derecha sobre las cadenas de Komodo de la misma forma que se hace

con las listas. Este es un detalle importante y que puede ser confuso. El patrón [first|tail] (o patrón

cons) es compatible con listas y cadenas. Veamos un ejemplo:

let length([] || "") := 0

let length([_|tail]) := 1 + len(tail)

assert(length([1, 2]) = length("ab"))

Listado 40: Patrón cons para listas y cadenas.

En este ejemplo, se muestra que para que la función length funcione para listas y cadenas, el patrón

[] || "" debe usarse, y así tener en cuenta ambos casos. Sin embargo, el patrón [_|tail] funciona

para cadenas y listas por igual. Esto hace que la compatibilidad con el patrón cons no garantice que el

argumento pasado sea una lista. En efecto, podría ser una lista o una cadena de caracteres.

Además, nótese que una lista de caracteres es diferente a una cadena:

assert(['a', 'b'] /= "ab")

Listado 41: Diferencia entre cadenas y listas de caracteres.

La diferencia entre cadenas y listas de caracteres es una característica traída de otros lenguajes como

un detalle de implementación, pero conflictúa con la preferencia de Komodo de entender a los datos

con la menor cantidad de detalles de implementación posible.

- Contenedores

Los contenedores almacenan otros valores, incluyendo los de su mismo tipo. Todos los contenedores

de Komodo permiten almacenar valores de diferente tipo en el mismo contenedor simultáneamente.

- Tuplas

Las tuplas son colecciones ordenadas de valores, que no crecen. Su propósito es juntar valores. Pueden

escribirse como valores separados por comas, rodeados por paréntesis.

16

El lenguaje de programación Komodo

(5, "cinco", (a) -> a + 5)

Listado 42: Tuplas de Komodo.

Sin las tuplas, quedarían dos soluciones para tener valores compuestos:

• Usar un diccionario: Esta solución está bien, pero puede ser demasiado complicada para algunos

problemas. Además, puede operarse con otros diccionarios, lo cual puede ser indeseable.

• Usar una lista: Es una solución muy similar, pero sigue estando el problema de que pueden ser

operadas con otras listas, lo cual puede ser indeseable.

Estas dos soluciones usan tipos con un propósito muy claro, y estarían siendo usadas de manera

ligeramente distinta. La mayor utilidad de las tuplas es declarar la intención de que los datos en ellas

deberían estar juntos.

La tupla vacía, mencionada al principio de esta sección, es una tupla y no un tipo por separado. (véase

Sección -)

- Listas

Las listas de Komodo son de longitud arbitraria.

Se puede acceder a sus elementos de tres formas:

• Con índices enteros indexados desde cero, usando la notación list[index]. Esto es útil para escribir

procedimientos iterativos que involucran el orden en que se encuentran los elementos, y se accede

a múltiples partes de la lista en un mismo paso:

let reverse(l: List) :=

 var res := l

 for i in 0..(len(l)/2) do

 res[i] := l[len(l)-i-1]

 res[len(l)-i-1] := l[i]

 res

Listado 43: Reverso de una lista en Komodo.

El acceso por índice a un índice ilegal (negativo o, mayor o igual que la longitud de la lista) hace que

el programa sea interrumpido con un error.

• Iterando sobre la lista de izquierda a derecha, con la notación [first|tail]. Esto funciona bien para

la mayoría de casos de uso, y permite la escritura sencilla de procedimientos recursivos:

let max(a, b) := if a > b then a else b

let max([val]) := val

let max([first|tail]: List) := max(first, max(tail))

Listado 44: Máximo de una lista en Komodo

• Iterando sobre la lista con expresiones por comprensión o en ciclos:

17

El lenguaje de programación Komodo

let list := [1, 2, 1, 2]

let set := {val for val in list}

assert(set = {1, 2})

var acc := 0

for val in list do

 acc := acc + val

assert(acc = 6)

Listado 45: Iteración sobre listas.

El intérprete las almacena como arreglos dinámicos. Esta es una representación conveniente para

minimizar la solicitud de memoria en tiempo de ejecución y para la velocidad del acceso por índice,

pero no tanto para la creación de sublistas obtenidas de la lista donde se itera.

- Conjuntos

Los conjuntos de Komodo son de longitud arbitraria. Se puede iterar sobre ellos y verificar la perte

nencia de elementos.

Están representados como árboles binarios de búsqueda.

Los conjuntos tienen su propia sintaxis, y pueden ser escritos por extensión o por comprensión:

let A := {1, 2, 4, 8, 16} # por extensión

let B := {2**k for k in 0..5} # por comprensión

assert(A = B)

Listado 46: Conjuntos de Komodo.

Se puede iterar sobre sus elementos de varias maneras:

• Usando la notación cons para conjuntos:

let prod({}) := 1

let prod({some|rest}) := some * prod(rest)

Listado 47: Notación cons para conjuntos.

Esta notación funciona de la misma forma que la notación cons de listas.

La implementación actual garantiza que los elementos son recorridos en orden, pero esta caracte

rística podría cambiar.

• Usándolo como iterador en contenedores por comprensión y ciclos:

let set := {1, 2, 2}

var list := []

for val in set do

 list := [val|list]

assert(list = [1, 2] || list = [2, 1])

let list := [val + 1 for val in set]

assert(list = [2, 3] || list = [3, 2])

Listado 48: Iteración sobre conjuntos.

18

El lenguaje de programación Komodo

Para verificar que un elemento pertenece a un conjunto, puede usarse el operador in:

let A := {1, 2}

assert(1 in A)

Listado 49: Pertenencia de conjuntos.

Los conjuntos también pueden verificar contenencia e igualdad entre ellos, y se tienen las operaciones

de unión y diferencia:

let A := {1, 2}

let B := {2, 3}

assert(A + B = {1, 2, 3})

assert(A - B = {1})

assert(A - B < A) # contenencia estricta

assert(A <= A) # contenencia o igualdad

Listado 50: Operaciones entre conjuntos.

Los conjuntos pueden ser desestructurados y rastreados con patrones:

let {a, b} := {1, 2}

assert(a + b = 3)

Listado 51: Desestructuración de conjuntos.

La razón de que los conjuntos sean estructuras de primera clase es evitar que el usuario los implemente

incidentalmente como parte de la implementación de ciertas rutinas. Esta situación es muy común en

el tipo de problemas a los que Komodo apela.

- Diccionarios

Los diccionarios de Komodo son de longitud arbitraria. Son colecciones de parejas llave-valor, donde

el tipo de ambos es arbitrario.

Los diccionarios deben ser inicializados con al menos un elemento, pues la expresión {} genera un

conjunto:

let set := {} # conjunto

let dict := { () => () } # diccionario

Listado 52: Construcción de diccionarios.

Se puede acceder a sus elementos de dos formas:

• Notación usual: dic[llave] donde dic es un diccionario y llave es un valor arbitrario.

Esta notación permite usar cualquier valor de Komodo como una llave. Por ejemplo, aquí usamos

listas y conjuntos como llaves:

let dict := {

 [[1], [2]] => 3,

 {2, 3, 4} => 9,

}

assert(dict[[[1], [2]]] = 3)

assert(dict[{2, 3, 4}] = 9)

Listado 53: Diccionarios con llaves arbitrarias.

19

El lenguaje de programación Komodo

• Notación de objeto: objeto.llave, donde objeto es un diccionario y llave es interpretado como

una cadena, que es buscada en el diccionario.

Esto es equivalente a escribir objeto["llave"]. Aunque confusa, esta notación es una facilidad para

usar los diccionarios de una forma muy particular: como si fueran estructuras.

Este es un ejemplo:

var data := {

 "values" => [1, 2, 3],

 "length" => 3,

}

assert(data.length = 3)

assert(data.values = [1, 2, 3])

data.values := [val + 1 for val in data.values]

assert(data.values = [2, 3, 4])

assert(data.values = data["values"])

assert(data.length = data["length"])

Listado 54: Diccionarios como estructuras.

La búsqueda de una llave que no se encuentra en un diccionario interrumpe el programa con un error.

En la implementación actual, no se puede iterar sobre diccionarios. Sin embargo, si pueden ser buscados

con patrones:

let dict := {

 [[1], [2]] => 3,

 {2, 3, 4} => 9,

}

let f({x => 9, ..}) := x

assert(f(dict) = {2, 3, 4})

Listado 55: Patrones con diccionarios.

Los diccionarios están representados como árboles binarios de búsqueda, igual que los conjuntos. Esto

podría cambiar en el futuro.

4.6. El intérprete
El intérprete está escrito en el lenguaje de programación Rust. [8] El ecosistema de Rust, de manera

similar a lenguajes como OCaml, [9] es favorable para construir herramientas para lenguajes de

programación. El modelo de memoria de Rust no incluye manejo de memoria automático, sino un

sistema que permite verificar reglas que garantizan seguridad de memoria en tiempo de compilación.

El intérprete de Komodo es distribuido como un binario enlazado estáticamente cuando es posible, y

está organizado como un monolito.

Para la comunicación con el sistema operativo, se usa la librería estándar de Rust: Hasta ahora, no ha

sido necesario interactuar con una interfaz más cercana.

4.7. Gestión de memoria
La memoria de un programa de Komodo es gestionada automáticamente. Además, no hay una noción

de referencia (véase Sección 4.2.2.). Todo valor declarado con let debe ser constante, y todo valor

20

El lenguaje de programación Komodo

declarado con var puede cambiar de acuerdo a las restricciones de mutabilidad (véase Sección 4.2.5.).

Estas son las invariantes que el usuario de Komodo puede asumir.

La implementación de estas reglas es arbitraria, y en el caso del intérprete de Komodo, está en

desarrollo.

Para gestionar el uso interno de referencias y copias, el intérprete usa las siguientes reglas:

• Si un valor inmutable es asignado a otro valor inmutable, se asigna internamente una referencia en

lugar de copiar.

• Si un valor inmutable es asignado a un valor mutable, se asigna una copia.

• Si un valor mutable es asignado a un valor cualquiera, se asigna una copia.

• Si un valor cualquiera es pasado como argumento a una función, se pasa una referencia inmutable,

siguiendo la semántica de las funciones (véase Sección 4.2.5.).

• En cualquier otro caso, se pasa una copia.

Las reglas actuales no tienen en cuenta que debería suceder en situaciones que involucran contene

dores, donde pueden aparecer referencias cíclicas, por ejemplo. El comportamiento actual en estos

casos es crear copias.

El intérprete usa conteo de referencias para hacer recolección de basura automáticamente.

Se planea implementar una estrategia de mark-and-sweep, donde de manera periódica se recorre un

grafo de referencias del programa. Las referencias alcanzadas durante el recorrido son conservadas,

y las no alcanzadas son eliminadas. Luego las secciones de memoria que no tuvieron referencias

alcanzadas son liberadas.

4.8. Conversiones implícitas de valores
Komodo realiza conversiones de valores sin intervención del usuario, pero con reglas simples. Estas

conversiones en dos grupos de tipos.

4.8.1. Números

Cuando dos números de diferente tipo son las entradas de una operación aritmética, una de las entradas

es convertida al tipo de la otra.

Los tipos numéricos son Integer, Fraction y Float. Cuando se realiza una operación permitida entre

cualesquiera dos valores con estos tipos, y los tipos son diferentes, se realiza una conversión de acuerdo

a las siguientes reglas, verificadas en orden:

• Si uno de los valores es de tipo Float, el otro es convertido a Float.

• Si uno de los valores es de tipo Fraction, el otro es convertido a Fraction.

Estas reglas abarcan todos los casos donde los operandos son de un tipo numérico distinto. Las

reglas implícitamente implementan la noción de una torre numérica [10, p. 19], [11], donde los tipos

numéricos respetan la siguiente jerarquía (en orden descendente):

• Float

• Fraction

• Integer

Aunque realmente el tipo Fraction es el que puede expresar más números de todos los tipos numéricos,

operar con números de punto flotante es usualmente más esperado y menos sorprendente que con

21

El lenguaje de programación Komodo

fracciones. En efecto, así lo hacen las jerarquías en [10] y [11]. Esta es la razón de que Float esté al

tope de la jerarquía.

4.8.2. Caracteres y cadenas

Cualquier concatenación que involucre un caracter tendrá como resultado una cadena. Es decir:

assert({"ab"} = {'a' + 'b', 'a' + "b", "a" + 'b'})

Listado 56: Conversión de caracteres.

Esta regla también aplica para la concatenación de un caracter consigo mismo, usando el operador *:

assert({"aaa"} = {'a'*3, 3*'a'})

Listado 57: Conversión de caracteres.

5. Aspectos periféricos
Komodo, como proyecto, incluye piezas adicionales al intérprete, así como procesos de trabajo para

crearlas. Esta sección enumera estos elementos y los explica brevemente.

5.1. Software adicional
Hay software adicional al intérprete que lo asiste o extiende su alcance.

5.1.1. Editor web

Una compilación del interprete a WebAssembly o WASM [12] es usada para poder usar el intérprete

en el editor web de Komodo. Es una versión sin la librería estándar y con una interfaz simulada del

sistema operativo.

WASM es un objetivo de compilación sin una máquina de destino específica. Su enfoque es la ejecución

de código en ambientes aislados e independientes de la máquina de ejecución. En este caso, el intérprete

se compila a WASM para ejecutarlo en navegadores de Internet. Los navegadores más populares ya

pueden ejecutar WASM.

La compilación del intérprete a WebAssembly se logra con el control de las dependencias de Komodo.

En particular, se genera una versión del intérprete donde todas las dependencias pueden ser compiladas

a WASM. Esto hace que la versión para el navegador sea ligeramente distinta a la versión nativa. Estas

son las principales diferencias:

• La importación de modulos no está implementada. Ni los módulos de la librería estándar, ni la

importación de archivos con código hacen parte de la versión para navegadores.

• Las funciones incorporadas que usan la entrada y salida estándar usan una interfaz simulada, que

en realidad interactúa con la interfaz de usuario en el navegador.

• No hay un REPL, a diferencia de la versión nativa.

Esta versión modificada del intérprete es compilada a WASM. El binario obtenido es optimizado y luego

empaquetado con una interfaz hecha en JavaScript, con la que el editor web de Komodo interactúa para

ejecutar código escrito por el usuario. Así, se evita tener que enviar el código a un servidor, ejecutarlo

allí, y devolver los resultados. La ejecución de los programas en el editor web ocurre del todo en la

máquina del usuario.

Esta gráfica explica el paso desde el intérprete original a la versión para navegadores:

22

El lenguaje de programación Komodo

Código original

↓

Eliminación de dependencias

Desacoplado del sistema operativo

↓

Código compilable a WASM

↓

Compilación a WASM

↓

Binario de WASM

↓

Optimización y empaquetado

↓

Paquete con interfaz en JS

↓

Despliegue a la web

↓

Editor web de Komodo

23

El lenguaje de programación Komodo

5.1.2. Resaltado de sintaxis

Se escribió una gramática de TextMate [13] para los tokens de Komodo, y así obtener resaltado de

sintaxis en los editores de texto compatibles. Se distribuye una extensión para los editores VSCode y

VSCodium, que añaden resaltado de sintaxis para Komodo a los archivos con extensión .komodo.

5.1.3. Instaladores

Se distribuye un script para instalar Komodo en distribuciones GNU/Linux, con máquinas con arqui

tectura AMD64. El instalador añade al sistema un binario enlazado estáticamente y los archivos de la

librería estándar. Puede usarse ejecutando el siguiente comando, que instala la versión de Komodo más

reciente:

curl --proto '=https' --tlsv1.2 -sSf https://komodo-lang.org/install.sh | sh

Se planea distribuir binarios e instaladores para MacOS y Windows, así como para más arquitecturas,

en particular ARM64.

5.2. Guía de uso
Está publicada una guía de uso de Komodo en https://komodo-lang.org/book. El propósito del

material es asistir a cualquier persona interesada en Komodo en el aprendizaje del lenguaje y en el uso

del ecosistema. La guía está en constante cambio de acuerdo a como el lenguaje cambia. Se desea que

la guía sea el recurso por defecto para aprender a usar Komodo.

6. Gramática de Komodo

6.1. Lista de tokens

Esta es una lista de los tokens que el analizador léxico emite, y las reglas que hacen que sean emitidos. Se

muestran expresiones regulares para algunos tokens con el propósito de ilustrar las reglas rápidamente,

pero la implementación del lexer no usa expresiones regulares. Los tokens que están relacionados a

los bloques de indentación indentados son casos especiales, cuyo funcionamiento se describe con más

detalle en la sección sobre análisis léxico (véase Sección 3.1.).

Las expresiones regulares están escritas con el estilo de Perl. [14]

Nombre Descripción Expresión regular

Ampersand Sígno et: & &

Arrow Flecha simple: -> ->

As Palabra clave: as as

Assign Símbolo de asignación: := :=

Bang Símbolo de exclamación: ! !

Case Palabra clave: case case

Char Caracter Unicode '.'|'\\.'

Colon Dos puntos: : :

Comma Coma: , ,

Dedent El final de un bloque indentado.

Do Palabra clave: do do

Dot Punto: . \.

DotDot Punto tras punto: .. \.\.

Else Palabra clave: else else

24

El lenguaje de programación Komodo

Equals Símbolo de igualdad: = =

False Palabra clave: false false

FatArrow Flecha gruesa: => =>

For Palabra clave: for for

From Palabra clave: from from

Greater Símbolo de mayor que: > >

GreaterEqual Símbolo de mayor o igual que: >= >=

Ident Un identificador. \p{Alphabetic}

[\p{Alphabetic}\p{GC=Number}]

If Palabra clave: if if

Import Palabra clave: import import

In Palabra clave: in in

Indent El inicio de un bloque indentado.

Integer Un entero en base 2, 8, 10 o 16. (0)|(0(b|B)[0-1]+)|(0(o|O)[0-7]+)|

([1-9][0-9]*)|(0(x|X)[0-9a-fA-F]+)

Lbrace Corchete izquierdo: { {

Lbrack Paréntesis cuadrado izquierdo: [\[

LeftShift Dos menor que juntos: << <<

Less Símbolo de menor que: < <

LessEqual Símbolo de menor o igual que: <= <=

Let Palabra clave: let let

LogicAnd Dos sígnos et juntos: && &&

LogicOr Dos barras verticales juntas: || \|\|

Lparen Paréntesis izquierdo: (\(

Memoize Palabra clave: memoize memoize

Minus Guión: - -

Newline Salto de línea.

NotEqual Un slash y un símbolo de igualdad: /= \/=

Percent Símbolo de porcentaje: % %

Plus Símbolo de suma: + \+

Rbrace Corchete derecho: } }

Rbrack Paréntesis cuadrado derecho:]]

RightShift Dos mayor que juntos: >> >>

Rparen Paréntesis derecho:))

Slash Una barra inclinada: / \/

SlashSlash Dos barras inclinadas: // \/\/

Star Un asterisco: * *

StarStar Dos asteriscos: ** **

String Una cadena de caracteres. "[.\s]*"

Then Palabra clave: then then

Tilde Una virgulilla: ~ ~

25

El lenguaje de programación Komodo

True Palabra clave: true true

Unknown Un caracter no reconocido.

Var Palabra clave: var var

VerticalBar Barra vertical: | \|

Wildcard Barra baja: _ _

Tabla 1: Tokens del lexer de Komodo y sus reglas.

Hay algunas particularidades a mencionar:

1. El lexer ignora los segmentos que comienzan con un númeral # y terminan con un salto de línea.

Estos son los comentarios de Komodo.

2. Los identificadores reciben toda la clase Alphabetic de Unicode en su primer caracter, y luego

reciben caracteres de la clase Alphabetic o Number. [15]

Estos nombres son propiedades de caracteres Unicode. [16]

3. Como muestra su expresión regular, los identificadores no incluyen barras bajas en ningún punto.

Están exlusivamente compuestos de caracteres alfanuméricos.

4. Los ceros a la izquierda en enteros decimales no están permitidos. Un cero sólo va al principio de

un token Integer cuando consiste en un solo cero, o cuando se va a escribir un prefijo para una

base numérica no decimal (0b, 0o o 0x).

6.2. Reglas sintácticas
A continuación, se muestran las reglas sintácticas de Komodo. Se usan nombres en inglés para reutilizar

los nombres usados en la lista de tokens, que se van a referenciar en esta gramática. Esto significa que

si hay una regla no terminal mencionada en la gramática pero no está definida en la misma, entonces

su nombre está en la lista de tokens y sus reglas son las mismas que las del token con el mismo nombre.

Los símbolos terminales se muestran entre comillas (como «+», por ejemplo) y los no terminales entre

corchetes angulares (como <Dict>, por ejemplo).

La gramática ignora detalles como los espacios en blanco, cuyo procesamiento es responsabilidad del

analizador léxico.

Esta gramática no incluye información sobre precedencias de operadores, pero esto está en la tabla de

precedencias (véase Sección 6.2.1.).

La gramática mostrada es una referencia para describir la sintaxis de Komodo, pero el análizador

sintáctico del intérprete no fue construido con una gramática en mente.

Nota: 𝜆 denota la cadena vacía.

<Program> ⩴ 𝜆

| <Expression> <Program>

<Expression> ⩴ <Bool>
| <Char>
| <Ident>
| <String>
| <Integer>
| <List>
| <Tuple>
| <Set>
| <Dict>
| <Call>

26

El lenguaje de programación Komodo

| <Lambda>
| <Prefix>
| <Infix>
| <Declaration>
| <Import>
| <Case>
| <If>
| <For>
| <Parenthesized>

<Bool> ⩴ «true»
| «false»

<List> ⩴ «[« <Expression> «for» <Pattern> «in» <Expression> «]»
| «[« <Expression> «|» <Expression> «]»
| «[« <Sequence> «]»

<Pattern> ⩴ «_»
| <Bool>
| <Char>
| <Ident>
| <String>
| <Integer>
| <ListPattern>
| <TuplePattern>
| <SetPattern>
| <DictPattern>
| <InfixPattern>

<ListPattern> ⩴ «[« <Pattern> «|» <Pattern> «]»
| «[« <SequencePattern> «]»

<SequencePattern> ⩴ 𝜆

| <Pattern>
| <Pattern> «,» <SequencePattern>

<TuplePattern> ⩴ «(« <SequencePattern> «)»

<SetPattern> ⩴ «{« <Pattern> «|» <Pattern> «}»
| «{« <SequencePattern> «}»

<DictPattern> ⩴ «{« <DictSequencePattern> «}»

<DictSequencePattern> ⩴ <Pattern> «=>» <Pattern>
| <Pattern> «=>» <Pattern> «,»
| <Pattern> «=>» <Pattern> «,» <DictSequencePattern>

<InfixPattern> ⩴ <Pattern> «||» <Pattern>
| <Pattern> «:» <Signature>

<Signature> ⩴ <Ident>
| <Ident> «||» <Signature>

<Sequence> ⩴ 𝜆

| <Expression>
| <Expression> «,» <Sequence>

<Tuple> ⩴ «(« <TupleSequence> «)»

<TupleSequence> ⩴ 𝜆

| <Expression> «,» <Sequence>

<Set> ⩴ «{« <Expression> «for» <Pattern> «in» <Expression> «}»
| «{« <Expression> «|» <Expression> «}»
| «{« <Sequence> «}»

<Dict> ⩴ «{« <DictSequence> «}»

<DictSequence> ⩴ <Expression> «=>» <Expression>
| <Expression> «=>» <Expression> «,»
| <Expression> «=>» <Expression> «,» <DictSequence>

<Call> ⩴ <Expression> <Tuple>

<Lambda> ⩴ <Tuple> «->» <Block>
| <Ident> «->» <Block>

<Block> ⩴ <Expression>
| <Indent> <BlockSequence> <Dedent>

<BlockSequence> ⩴ <Block>
| <Block> <BlockSequence>

27

El lenguaje de programación Komodo

| <Expression>
| <Expression> <Newline>
| <Expression> <Newline> <BlockSequence>

<Prefix> ⩴ <PrefixOperator> <Expression>

<PrefixOperator> ⩴ «~»
| «!»
| «-»

<Infix> ⩴ <Expression> <InfixOperator> <Expression>

<InfixOperator> ⩴ «in»
| «..»
| «||»
| «&&»
| «>»
| «>=»
| «<»
| «<=»
| «/=»
| «=»
| «^»
| «&»
| «<<»
| «>>»
| «-»
| «+»
| «/»
| «%»
| «*»
| «**»
| «:=»

<Declaration> ⩴ «let» <Pattern> «:=» <Block>
| «let» <CallPattern> «:=» <Block>
| «let» «memoize» <CallPattern> «:=» <Block>
| «let» <Pattern> «:» <Ident>
| «var» <Pattern> «:= <Block>»

<Import> ⩴ «import» <ImportSource>
| «import» <ImportSource> «as» <Ident>
| «from» <ImportSource> «import» <ImportTarget>
| «from» <ImportSource> «import» <ImportTargetTuple>

<ImportTarget> ⩴ <Ident>
| <String>

<ImportTargetTuple> ⩴ «(« <ImportTargetSequence> «)»

<ImportTargetSequence> ⩴ <ImportTarget>
| <ImportTarget> «,» <ImportTargetSequence>

<Case> ⩴ «case» <Expression> «do» <Indent> <CaseBlock> <Dedent>

<CaseBlock> ⩴ <Pattern> «=>» <Expression>
| <Pattern> «=>» <Expression> <Newline>
| <Pattern> «=>» <Expression> <Newline> <CaseBlock>

<If> ⩴ «if» <Expression> «then» <Block> «else» <Block>

<For> ⩴ «for» <Pattern> «in» <Expression> «do» <Block>

<Parenthesized> ⩴ «(« <Expression> «)»

6.2.1. Tabla de precedencias

Esta lista tiene todos los operadores infijos de Komodo, con su respectiva precedencia. Un operador

con cierta precedencia va a ser agrupado antes que otro operador con menor precedencia.

Operador Precedencia

:= 1

in 2

28

El lenguaje de programación Komodo

.. 3

|| 4

&& 5

> 6

>= 6

< 6

<= 6

/= 6

= 6

^ 7

& 8

<< 9

>> 9

- 10

+ 10

/ 11

% 11

* 11

** 12

Tabla 2: Tabla de precedencias de Komodo.

Referencias
[1] J. Borwein y D. Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st

Century. en Ak Peters Series. Taylor & Francis, 2004.

[2] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT Press, 2002.

[3] «262: Ecmascript Language Specification - 6th Edition», ECMA (European Association for Stan

dardizing Information and Communication Systems), pub-ECMA: adr, 2015.

[4] T. Norvell, «Parsing Expressions by Recursive Descent». [En línea]. Disponible en: https://www.

engr.mun.ca/~theo/Misc/exp_parsing.htm

[5] «ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary», ISO/

IEC/IEEE 24765:2010(E), n.º , pp. 1-418, 2010, doi: 10.1109/IEEESTD.2010.5733835.

[6] «The GNU MP Bignum Library». [En línea]. Disponible en: https://gmplib.org/

[7] «The GNU MPFR Library». [En línea]. Disponible en: https://www.mpfr.org/

[8] «Rust Programming Language». [En línea]. Disponible en: https://www.rust-lang.org/

[9] «Ocaml Programming Language». [En línea]. Disponible en: https://ocaml.org/

[10] N. I. Adams et al., «Revised5 report on the algorithmic language scheme», SIGPLAN Not., vol. 33,

n.º 9, pp. 26-76, sep. 1998, doi: 10.1145/290229.290234.

[11] J. Yasskin, Ed., «PEP 3141 - A Type Hierarchy for Numbers». [En línea]. Disponible en: https://

peps.python.org/pep-3141/

29

https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://doi.org/10.1109/IEEESTD.2010.5733835
https://gmplib.org/
https://www.mpfr.org/
https://www.rust-lang.org/
https://ocaml.org/
https://doi.org/10.1145/290229.290234
https://peps.python.org/pep-3141/
https://peps.python.org/pep-3141/

El lenguaje de programación Komodo

[12] A. Rossberg, Ed., «WebAssembly Specification». [En línea]. Disponible en: https://webassembly.

github.io/spec/core/

[13] «Language Grammars - TextMate 1.x Manual». [En línea]. Disponible en: https://macromates.

com/manual/en/language_grammars

[14] «perlre - Perl regular expressions». [En línea]. Disponible en: https://perldoc.perl.org/perlre

[15] K. Whistler, Ed., «Unicode Character Database». [En línea]. Disponible en: https://www.unicode.

org/reports/tr44/

[16] A. F. Ken Whistler, Ed., «The Unicode Character Property Model». [En línea]. Disponible en:

https://www.unicode.org/reports/tr23/

30

https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/
https://macromates.com/manual/en/language_grammars
https://macromates.com/manual/en/language_grammars
https://perldoc.perl.org/perlre
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr23/

	1. Introducción
	2. Visión general
	2.1. Sistema de tipos
	2.2. Paradigmas
	2.3. La estructura del intérprete

	3. Análisis léxico y sintáctico
	3.1. Analizador léxico o lexer
	3.1.1. Rastreo de indentación y el alcance del analizador léxico

	3.2. Analizador sintáctico o parser
	3.3. Post-analizador sintáctico o weeder

	4. Ejecución de programas
	4.1. El modelo de ejecución
	4.1.1. Entornos
	4.1.2. Evaluador

	4.2. Variables
	4.2.1. Resolución de nombres
	4.2.2. Copiado de valores
	4.2.3. Variables y tipos
	4.2.4. Ocultamiento o shadowing
	4.2.5. Mutabilidad restringida

	4.3. Importación de código
	4.3.1. Comportamiento de las sentencias import

	4.4. Búsqueda de patrones o Pattern matching
	4.4.1. Descripción de procedimientos
	- Patrones en funciones
	- Expresiones case

	4.4.2. Desestructuración

	4.5. Tipos
	4.5.1. Latente
	4.5.2. Gradual
	4.5.3. Dinámico
	4.5.4. Los tipos incorporados
	- La tupla vacía
	- Números
	- Enteros
	- Números de punto flotante
	- Fracciones

	- Funciones
	- Caracteres y cadenas
	- Caracteres
	- Cadenas

	- Contenedores
	- Tuplas
	- Listas
	- Conjuntos
	- Diccionarios

	4.6. El intérprete
	4.7. Gestión de memoria
	4.8. Conversiones implícitas de valores
	4.8.1. Números
	4.8.2. Caracteres y cadenas

	5. Aspectos periféricos
	5.1. Software adicional
	5.1.1. Editor web
	5.1.2. Resaltado de sintaxis
	5.1.3. Instaladores

	5.2. Guía de uso

	6. Gramática de Komodo
	6.1. Lista de tokens
	6.2. Reglas sintácticas
	6.2.1. Tabla de precedencias

	Referencias

